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Theory of Random Degradation and Its Applications to Polymer Modification, Chain

Transfer Reactions, and Particle Size Distribution
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A simple computational method to predict thc molecular weight distribution (MWD) formed

through random chain scission of linear chains is proposed. This method can be applied to any

initial MWD including experimentally obtained ones with small computational time. The random

degradation theory can be applied to such problems as the effect of chain transfer reactions and the

particle size distribution (PSD) formed in microemulsion polymerization, as well as the random

degradation of polymer chains.
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1. Introduction

Modification of the molecular weight distribution
(MWD)
polymers

through random scission degradation of

provides an attractive research field,
combining at the same time fundamental and applied
topics of great interest. Theoretical description of the
random chain scission has been studied for many years
by application of the analytical solutions for several
MWD and by  using

numerical simulation technique, notably through the
[8]-[14]

representative  polymer

Monte Carlo. {MC) method, for more general cases.

Compared with the MC technique, the analytical
approach is usually easier to use with superior precision.
On the other hand,
obtained only for several limited distribution functions

the analytical solution can be

and may not be applied to the experimentally obtained
distributions. The MC method is a versatile technique
and could be applied to various polymer systems.
However, the MC simulation results always involve
some amount of error, as long as the sample size is finite,
and a long calculation time may be needed for obtaining
statistically valid distribution.

initial

As an example, polymer

distribution is given by the Schulz-Zimm distribution

suppose the
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whose weight-based function W,(r) is given by:

“ e\ or
-ul"(o)( ) exp(—T) g

Wo(r)=
where # is the number-average chain length, and o

represents the narrowness of the distribution.
When the
Schulz-Zimm distribution is severed randomly with

linear polymer chains having the

scission probability ¢, the resulting distribution is given
by: 5]

2 ulk

C, rexp(-ng)

)

W(Z, n)-—{2crp+(l g)en? *T

where &=r/u, n=u¢,and C,is defined by:

(c+k)o+k+1)-2(c+k+ I)&;-:H((;?})z

Ci= (o+k)(o+k+])

)

Figs. 1-3 show the MWD change during random
scission process with o = 1 (the most probable
distribution), 0.1 (a broad initiall MWD) and 10 (a
narrow initial MWD),
calculated from Eg. (2), and the symbols are from the

respectively. The curves are

MC simulation method proposed earlier!'2'! A total of
2x10* polymer molecules were simulated in the MC
method. In the figure, the magnitude of ¢u represents the
average number of scission points in a chain.

As the scission reaction proceeds, the distribution
approaches to the most probable distribution whose
polydispersity index (Fw/l—’“) is 2. Both Egq: (1) and the
MC simulation results agree reasonably well. However,
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Fig. 1 MWD change during random degradation for
¥=1000 and o=1.
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Fig. 2 MWD change during random degradation for
¥=1000 and 0=0.1.
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Fig. 3 MWD change during random degradation for
%#=1000 and 0=10.

with a closer look at these figures, one would notice that
(1) the MC simulation results involve small but finite
amounts of errors, and (2) the high MW tail of the
analytical solution in Fig. 3 with ¢u =1 shows an
oscillatory behavior, as more clearly shown in Fig. 4.
This is because the summation in Eq. (2) involves
positive and negative terms that appear alternatively with
4 When the magnitude of each term in the summation is

extremely large, it is difficult to obtain the numerical
calculation results with high accuracy. Even the
analytical solution may not be free from errors when the
actual numerical calculation is conducted.

In this article, first, a simple calculation method for
the MWD formed through random chain scission is
proposed. [t is aimed to develop a method that works (1)
fast enough (2) with higher precision, and that (3) can be
applied to any type of initial MWDs. The equations to
calculate the number- and weight-average chain lengths
are also proposed. Then, it will be shown that the random
degradation theory can be applied to various problems,
including seemingly unrelated phenomena. The theory is
applied to: (1) the peroxide promoted degradation of

‘polypropyrene, (2) the MWD formed through the

conventional free-radical polymerization that involves
chain transfer reactions, (3) the effect of monomer
transfer reactions in a living/controlled - free-radical
polymerization, and (4) the prediction of the particle size

distribution in microcmulsion polymecrization.
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Fig. 4 Closer look at the MWD for ¥=1000, 0=10 and ¢u
=il

2. Theoretical

2.1 Basic Strategy

The fundamental idea proposed in this article is very
simple. The MWD formed through random degradation
of polydisperse polymers is calculated by superimposing
the MWDs
monodisperse polymers. The solid curve in Fig. 5 shows

formed by random degradation of
the initial polymer distribution. Within this initial
polymer mixture, the shaded area represents the fraction
having a certain chain length. This fraction of polymer
would form the polymer represented by the lightly
shaded area through random degradation. The whole
MWD formed by random chain scission of the initial
polymer (represented by the dashed curve) can be



obtained by summing up all of the degraded fractions.

When the initial polymers, whose weight fraction
distribution is Wy(r), are degraded by cutting the bonding
with probability ¢, the resulting polymer distribution is
represented by:

W)= 3 WolsWor,5.9) 4)
§=r
where W, (r.s,¢) is the weight fraction distribution
formed by random degradation of uniform polymers
having chain length s.
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Fig. 5 Fundamental concept of the calculation method
for the random degradation of polydisperse polymers.

2.2 Random Degradation of Uniform Polymer Chains

The functional form of the MWD formed by random
degradation of uniform polymer chains is already known.
. However, in this section the full MWD function as well
as the weight-average chain length is derived by using
the random sampling technique[”] in which only a
simple arithmetic calculation is needed. The weight
fraction distribution can bc obtained by sclecting
polymer chains on a weight basis. The selection on a
weight basis can be conducted by selecting one unit

randomly from all units in polymer chains.
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Fig. 6 Derivation of the MWD function formed through
random degradation of uniform polymer chains.
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Consider a polymer chain having length s as shown in
Fig. 6(a). The probability of cutting cach bond is ¢. First,
consider the probability of having a chain with length r =
Woi(1,5,9). As
shown in Fig. 6(b), if one chooses the end units (first or

| by selecting one unit randomly, namely,

the last unit) whose probability is 2/s, the chain with r =
1 can be obtained by cutting one bond whose probability
is ¢. On the other hand, if one chooses other than the end
units whose probability is (s-2)/s, two bonds connected
to the randomly selected unit must be cut to obtain a
chain with » = 1 whose probability is ¢. Therefore,
W.a(1,5,¢) is given by:

Wu,.i(l,s,¢)=§¢+-s‘s—2¢2 )

Similarly, W,,(2.s.¢) can be determined as follows. (i)
If one chooses the end units, the chain with » =2 can be
obtained by connecting the neighboring unit while
cutting the second bond. The probability of causing such
type of events is (2/s)(1-¢)¢. (ii) If one chooses the
second to the end units, the chain with » = 2 can be
obtained as follows. If the end unit is connected, the
other side bonding must be cut. On the other hand, if the
counter side from the end is connected, two bonds must
be cut, as shown in Fig. 6(c). The probability of causing
such type of events is Q@/s)(1-9)pH(1-9)¢’). (iii) If one
chooses other than the above units whose probability is
(s-4)/s, two bonds must be cut while connecting one of
the neighboring units. Therefore, the probability of
causing such events is [(s-4)/s]x2(1-¢)¢z. Woa(2,5,9) can
be obtained by summing up the probability for these
three types of possible events:

(1- )

a1 2Us-
Wit =200+ 2{(-pp -0} 2=

-2(1-)p+ {2 %}(I—W ©)

The same discussion leads to:
6 6 Ns-6
Wum(a,s,¢)=;(l-¢)2 { ( )}(1 o) e> ()
In general, W,,(r.5.¢) is given by:

‘ =l o)

tis]

r"’ o) {2+(s-r-1)g} (8)

On the other hand, the chains with » = s is obtained
only when no bonds are cut, and W,,,(r.s,¢)=(1-¢)"". The
obtained results are summarized as follows:
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%(]—¢)r_l{2+(s— r-1)g}  (r<s)
um(’ 5.¢)= ( _¢)r_1 (r=ys) (9)
0 (r>s)

For the cases with ¢ <<] and » >>1, Eq. (9) can be

approximated to:

i) {2 + }exp( ¢r) (r<s)
wu(r s fp)= exp( ¢r) (r= S) (IO)
0 (r>s)

Equation (10) agrees with the solution obtained by
Saito” in which the integro-differential equation was
used.

The number-average chain length can be obtained
simply from the stoichiometric argument. The
number-average chain length can always be obtained by
taking the ratio between the total number of monomeric
units and the total number of polymer molecules. The
number of polymer chains increases by one by cutting

one bond, and therefore:

D I PR.O

P, —— (1)
| ( 1)¢ L+(Pyo-1)¢

—+|lm—

F n0 Pn.O

where P2 is the number-average chain length of the
original (initial) polymer chains.

The weight-average chain length can be obtained from
the distribution function, Eq. (9) or (10). However, in
order to show the versatility of the random sampling
technique, it is derived by using this technique. Look at
Fig. 6(a) again. One chooses one unit randomly, and the
expected chain length so selecled is the weight-average
chain length. To simplify the discussion, let us assume s
= 4. Suppose one has chosen the first unit. In this case,
one unit has already been ensured. The probability that
the second unit is connected is p =1-¢ and if the second
unit is connected, the number of units on this chain
increases by one. Therefore, the expected number of
units up to the second unit is 1+px1. The probability that
the third unit exists in the selected chain is p?, and the
expected number of units up to the third unit is
1+px1+p’x1. As a consequence the total - expected
number of units when the first unit is selected randomly,
P,S') is given by:

PV =14p+piap’ (12)

Please remember that we are now considering the case

with s = 4.

Next, consider the expected weight when the second
unit is chosen randomly. Toward the right direction, the
expected weight including the selected unit is 1+p+p”.
Looking toward the left-hand side, the expected weight
is px1. Therefore, P is given by:

PP =l+p+pi+p a3)

Any unit on the chain can be selected with equal
probability, 1/4, and therefore, the total expected weight,
which is equal to the weight-average chain length of the
whole reaction mixture, 2, is given by:

Po= (V4 PO+ + BY)

"W

=%{(I+p+p2+p")+(|+p+p2+p)+(l+p+p+pz)+(|+ p+ pz +p')}

234,
X

(14)

In general for the initial uniform polymer chains with

=]+%{(p+ p2+p3)+(p+ pZ)Q- p}=

r =s, the weight-average chain length is given by:

= s=1J s(1- P)"' ]_ps
P\\'.nui(s’ P) =1+ 22 _(—(T'_-)'
R (1-p)
(15)
By substituting the relationship. p=1-¢, one obtains:

2(1-¢)
nmu(’ )_]+ ¢_I+ 1- (]6)
5,0 pep { § ( )} :

Equation (16) agrees with the equation developed in
ref!”! in which the cascade thcory was used for the

derivation.
When ¢ <<] and s >>1, Eq. (16) reduces to:
—= 2
Py ini(5:9) = E{w — 1+ exp(-¢s)} (7)

Equation (17) agrees with the one derived in ref.”™ in
which the integro-differential equation was used to solve.
Further, it is straightforward to show that Eq. (16) is
obtained by summing up the distribution function,

1—’,,,'“,,,-(s,¢)=2rww,,(l 5,¢) using the function shown

r=]
in Eq. (9). In addition, it was confirmed that Eq. (17) can
be obtained from P, .(s.9)= f rW,.i(r,s,9)dr by
using Eq. (10) for the distribution function.
2.2 Random  Degradation of Polydisperse Polymer

Chains
The MWD formed through the random degradation of



polydisperse polymer chains can be obtained from Eq.

(4):

W()‘,¢) o 2 WO(S)Mlmli (r,s,(p)

3=r

2elemr 8y

—ro(l-9)" S Wals)

=yl
(18)
When ¢ <<1 and s >>1, Eq. (18) reduces to:

Wir.g)=r¢ exp(—d)r)f:: Wy(s) Ma’s +W, (r)exp(-d)r)

; 2+(s-
srg exp(—q{)r)fr'""‘ Wy (s) ———-~+ (‘: r)¢

ds + Wy (r)exp(—gr)

(19)
where #q represents the chain length above which Wy(r)
practically drops to zero.

Fig. 7 shows the calculated results when the initial
polymer distribution follows the Schulz-Zimm
distribution with ¥=1000 and 0=10. As discussed in the
introduction part, Eqg. (2) has troubles in conducting the
numerical calculation, and shows an oscillatory behavior.
On the other hand, Eq. (19) shows a nice smooth curve
up to the high molecular weight 1ail that agrees with the
MC simulation results. The present method works pretty
fast and is free from statistical errors. In addition this
method can be applicd to any initial polymer distribution
including the experimentally obtained ones. '

For the number average chain length, Eq. (11) is valid
also for the polydisperse systems,

The weight-average chain length can be obtained

from:
[ [u=1000 T f ' =

&0 =10
= 1.5 u=| -
gf I ® MC method |
g “F = Eq. (2)

o5 —— Present Theory
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Fig. 7 Calculated MWD formed through random
degradation of polymer chains having the Schulz-Zimm
distribution with #=1000 and 0=10 when the degree of
chain scission is gu =1.
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For ¢ <<I and s >>1, Eg. (20) can be approximated
by:
B, = [T Wo()P, nils,$)ds

54%_ s Wo(s)wds @1

When the initial polymer distribution Wy(r) follows
the Schulz-Zimm distribution represented by Eq. (1). Eq.
(20) leads to obtain:

5 2(1-¢) R o ,
P.=1+ e [ugb I+[—_U—Hln(l—¢)]} (22)

Equation (22) agrees with the equation derived in
[71

ref.

On the other hand, when Eg. (21) is used, the random
degradation of polymers having the Schulz-Zimm
distribution leads to:

s 2 U a
P\‘,=W{u¢—l+{o+“¢) } (23)

Equation (23) agrees with the one developed in ref.l’]

3. Applications

3.1 Polymer Modification by Degradation

The most straightforward application of the present
theory is to investigate the modification of polymer
distribution by the random chain scission reactions. As
an illustration, the experimental data for the peroxide
promoted degradation of polypropylene reported in

(¢l are used. In the present investigation, the main

ref.
purpose is to show the versatility of the present method;
ie., the present method does not require the MWD
represented by some distribution function, but the
experimental data that may involve errors could be
employed directly. Therefore, we are not going into
detailed discussion on the chemistry of this particular
reaction system.

The actual reaction mechanism of peroxide promoted
degradation of polypropylene could involve complicated
reactions; however, it was reported that the random
degradation model agrees reasonably well, at least for



28

the prediction of average molecular weight development
during degradation.!'*: ']

The bold curve in Fig. 8 shows the initial polymer
distribution. We have taken a set of discrete data from
ref!'" reported graphically. It is expected our numerical
data involve some amount of errors because of the
read-out addition to the

experimental errors. Equation (19) was used to calculate

graphical method, in
the MWD formed through random chain scission. A
spline function was used to interpolate the discrete data

for the numerical integration.

W(log,qr)

logyyr

Fig. 8 Peroxide promoted degradation of polypropylene.
The solid curves are the experimental data reported in
ref!'%), and the dashed curves are the calculated.

In the reported experiment!'®t U') the initiator,
2,5-dimethyl-2,5-bis(t-butylperoxy)hexane was used as a
radical generator. The weight percentage of the initiator
used is shown in Fig. 8. The ¢ values used are 8x10~° and
5x10“‘, respectively for 0.02% and 0.30%. Note thai

these values were not optimized, and should be regarded

as a rough measure of the degree of chain scission. The
calculated results agree reasonably well with the
experimental data, except for the larger chain length
regions. ‘

Up to the present, the average molecular weight data
have been mainly used to investigate the polymer
degradation. The use of present method promises a more
detailed investigation using the full MWD data.

3.2 Chain Transfer Reactions in Conventional
Free-Radical Polymerization

In this section, it will be shown that the random
degradation theory can be used to investigate the effects
of chain transfer reactions, by confirming that the present
theory leads to a well-established theoretical MWD
function for  the
polymerization.

conventional free-radical

The most probable distribution is the most
representative MWD function of synthetic polymers, and
the instantaneous MWD (formed within a very small
time interval) of free-radical polymerization follows this
function when the combination termination reactions can

be negliected, which is given by:ml

I r-1 T 2
Wo(r)= r(—] (—) (24)
l+7 1+t

N
T= [R,,, + }jkﬂ.) /R,, (25)

where R, is the rate of disproportionation termination, R,
is the rate of polymerization, and Ry, represents the rate
of chain transfer reaction of type i. It is assumed that
there are N types of chain transfer reactions. Therefore,
when another type of chain transfer reaction is
introduced, 7 should be changed to T=t+& where
E=Ryn 1/R,. Note that the lifetime of a growing polymer
radical is very small, and therefore, the concentration
change during such a small time interval can be
neglected. The values of T and 7" are considered constant
in the instanianeous MWD.

In the present reaction system, a dead polymer chain is
formed either by disproportionation termination or by
chain transfer. When an additional chain transfer reaction
is introduced, the probability of chain stoppage by this
additional transfer reaction is:

po—2 26)

1+7+§&

When chain transfer reaction occurs, a new growing
polymer chain is formed at the same time. Therefore, the
MWD formed by chain transfer reaction is equivalent to
considering chain scission of the polymer molecules
without the transfer reaction.

Because the probability of chain stoppage through this
type of chain transfer reaction is the same for all bonds,
the formed MWD can be calculated by application of the
random degradation theory and is given by:

W(r)= 3 Wo(IW,z(r,5,0) _ (27)

By using W,,(rs,¢) given by Eq. (9), Eq. (27) leads
to:

W(r)=(—£—):r¢(l—¢)"‘ i [H%)J_I{u(r‘s—|)¢}+r(ﬂ)’_l(—’—)2

l+7 = I+7 l+7
r-1 . \2
= ,(]_"2) (M) (28)
l+t I+t

Substituting ¢ represented by Eq. (26) into Eq. (28),



one obtains:

1 \7( s+g ’_r( ! )'( 7 )2
l+7+E& l+Tt+E) \l+7 1+

(29)

W(r)= r(

where =7 +&.

Equation (29) agrees with Eq. (24|), which shows that
the effect of chain transfer reaction can be investigated
by using the present random degradation theory.

When the combination termination is involved, a
special consideration is needed for the bonding formed
by the combination termination. If this bonding is cut,
the fate of the coupled polymer radical by the
combination must be considered. To be exact, therefore,
the present theory cannot be applied in a straightforward
manner. On the other hand, however, the polymer chains
normally formed in free-radical polymerization is large,
and it is reasonable to neglect the effect of this single
bonding on the whole MWD.

When the polymer chain length is large enough, the
MWD formed in free-radical polymerization, including
the combination termination, is given by the following

continuous function:!'®

Wo(r)=(z+ ﬁ){r + g(‘r + ﬁ)r}r exp{—(r + /3)(} (30)

where B=R./R, and R, is the rate of termination by
combination. '
The probability of chain scission- for this case is
represented by:
£
¢—in3+E g (31)
Note that we are considering the cases where the
formed polymer chains arc long enough, and thercfore, 7,

B E<<l.
By application of the present theory, the MWD

formed with the addition of another transfer reaction

2

would be given by:
W(r) = [T Wo(s)W,i(r,s,9)ds (32)

By using W,.(#s,¢) given by the exponential function
Eq. (10), one obtains:

Wiry=(t+ ﬂ)¢rexp(—¢r)f {‘r+ E(r+p)s }{2 -;(s— r)¢} exp{-(t + f})s}ds
+T+ B){‘IH- E(v+8) }rcxp{—(r+ B+ ¢)r}
=(t+p+ §){r+ §+£(r+ﬁ + §)r}rexp{-(r+ﬁ+ g)r}

(v +ﬁ){r +=(v +ﬁ)r}rexp{-(r'+ ﬁ)r} (33)
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It is shown here that the present random degradation
theory can be applied to investigate the cffect of chain
transfer reactions on the MWD. The necessary condition
is that the rate ratio, & =Ry .\/R, is kept constant during
the formation of a polymer chain, which is valid for the
instantaneous MWD in the conventional free-radical
polymerization.

If the (N+1)th transfer reaction is the monomer
transfer, the &value is kept constant during the whole
course of polymerization. Therefore, the accumulated
MWD can be obtained directly by application of the
present theory to the accumulated MWD estimated
without monomer transfer reactions as the initial
polymer distribution Wy(s).

3.3 EfTect of Monomer Transfer Reactions in Living
Radical Polymerization

Recently, the controlled/living  free-radical
polymerization has been significant academic and
industrial interest. An important motivation to employ a
living free-radical polymerization is to produce polymers
having narrow distribution. The frequency of
bimolecular termination can be reduced by lowering the
active radical concentration, preserving potentially active
radicals as dormant. If chain transfer reaction is involved,
in general, the ratio R/R, changes along the chain. On
the other hand, however, every effort is usually made to
reduce the chain transfer reactions by carefully removing
potential chain transfer agents from the reaction system.
In such cases, the only chain transfer reaction that cannot
be prevented is the monomer transfer reaction. For the
monomer ftransfer reaction, £=C,, wherc C, is the
monomer transfer constant, is kept constant during the
whole course of chain formation. Therefore, the present
random degradation theory can be applied to consider
how the monomer transfer reaction broadens the MWD,

As already pointed out,'” the living radical polymers
having very long chain lengths cannot be synthesized
because of the monomer transfer reactions. The
maximum number-average chain length attainable in any
free-radlcal polymerization is:

P I/ C (34)

The MWD formed in this case is the most probable,
and the polydispersity index (=P, /P,) is 2. In order to
obtain narrow distribution polymers, the chain length
designed to synthesize l_’,,.‘,m.g,, must be much' smaller
than P,

nmax*

Normally, C,<<I, and it is reasonable to set ¢ =C,,.
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The full MWD would be obtained from Eq. (9) or (10)
by using the We(r) function that does not account the
monomer transfer reactions. The number-average chain
length can be obtained from Eq. (11), and the
weight-average from Eq. (16) or (17).

It was recently shown that the MWD of the ideal

living radical polymerization is given by:*%

Wo(=(1-p)* pre = Fll+r2:(1- p)z]  35)

where z is the average number of active periods during
polymerization, and p is the probability of connecting the
next unit during the active period that is equal to the rate
ratio, RI,/(RI, +RD) where Ry, is the dormant formation
rate. In the above equation, it is assumed p is constant,
during polymerization, and the active periods are
distributed randomly. In Eq. (34). F(a,b;x) is the
confluent hypergeometric function (Kummer’s function
of the first kind), represented by:

2
F(a,b;x)=]+a_x+ a(a+1) X
b b(b+1) 2!

The MWD formed with the exislence of monomer

(36)

transfer reaction can be calculated from:

{2+C,,,(s—r)]-

W(r)s C,resp(-C,r) [ W(s) ds + Wy (r)exp(-C,,r)
r

(37)

A problem for applying Eq. (37) with the initial MWD
given by Eq. (35) is that it may ‘take rather long
computational time depending on the calculation
conditions because of the complicated hypergeometric
function. In such caseé, one can tresort lo a faster
calculation method. First, obtain the discrete data points
for the initial MWD Wy(r). Then, the continuous
approximate function is determined by using, for
example, a spline function. Finally, the spline function is
used to conduct the integration in Eq. (37).

Some of the examples of the calculated results are
shown in ref.”% [t was found that in terms of the weight
fraction distribution, the designed number-average chain
length 1_>,,‘dm.,.g” should be made smaller than about 10%
of E,‘max. On the other hand, however, a significant
number of shorter chains are already formed even when

P is as small as 10% of P

Pn.cleu'gn n.max

(I_’,,_dm.,-g,, =0.1x P, . ). In terms of the number fraction

distribution, it may bc better to keep P, smaller

1. design
than about 5% of P, ... If the purpose of using living
radical polymerization is to synthesize well-defined
block copolymer, it is recommended to keep. l_’,,

smaller than about 5% of }_’,,'ma,‘.

(design

Application of the present theory to the initial MWD.
predicted by the Monte Carlo simulation method can be
found in ref.”*"!

3.4 Particle Size Distribution (PSD) Formed in
Microemulsion Polymerization

In usual microemulsion polymerization, the amounts
of monomer and emulsifier initially charged are
comparable, and the number of micelles left in the
system is much larger than the total number of polymer
particles throughout the polymerization.”?! Therefore,
the probability of radical entry into the preformed
polymer particles is negligibly small. As a simplest
model, the microemulsion polymerization can be
considered as a polymerization without bimolecular
termination.™ ] For such a living system, the polymer
chain stoppage is dominated by the monomer transfer
reactions. without the existence of other chain transfer
agents. The polymer particle stops growing when an
oligomeric .radical formed by thc monomcr transfer
reaction exils [rom the particle /212!

The probability that a growing polymer radical causes
the monomer transfer reaction is C, /(1+C,)=C,, .
The oligomeric radical (mainly monomeric in most
cases) formed by the monomer transfer reaction may
then diffuse .out of the particle with probability P.,;.
Therefore, the probability of the radical exit from a
growing polymer particle before adding next monomeric
unit, ¢, is given by:

Ge = Confeci (38)

It is expected that P, is larger for smaller particles,
and P, should be particie-size dependent.m]' 1281 On the
other hand, it was reported that the model that neglects
the size dependency of P,y agrees with experimental
data reasonably well,'*”! especially when one considers
relatively large experimental errors involved in
measuring the PSD.

The major objective of the present theoretical
investigation is to explore the possibility to synthesize
polymer parlicles wilh narrow distribution qualitatively,
and we use a constant ¢-value in the present
investigation. For more detailed investigation, one can
resort to the other simulation techniques that account for
the nonrandom chain scission, such as the MC
simulation method.

Fig. 9 shows the basic concept of the present model
microemulsion polymerization system. At ¢ = ¢, a radical
enters into a micelle, and the particle starts to grow. The



second radical will not enter this particle. The growing
polymer chain may be stopped by the monomer transfer
reaction, and a new chain may be formed in the particle.
The particle continues to grow until the monomeric
radical formed by the monomer transfer reaction exits
from the particle. Neglecting the bimolecular termination
in the water phase for simplicity, the radical that exists
from the particle enters into another micelle to generate a
new polymer particle. These processes continue until the
polymerization is finally stopped at f = 1. '

T
|
Radical entry

Radical exit

!

i * time
{
4 Particle 1 .  Ppartictle2 *
Partticle
nucleation

(Radical entry)
Fig. 9 Schematic representation of the particle formation
in a model microemulsion polymerization system.

During the time interval between ¢ and f, the total
number of monomeric units added to a single radical, i.e.,
the sum of polymerized monomeric units both in the
particle 1 and 2 in Fig. 9, r is giveén by:

r= "k, M1,dt (39)

where [M],, is the monomer concentration in the polymer
particle.

Suppose the weight fraction distribution of polymer
particles without the exit of radicals is represented by
Wy(s), the weight fraction distribution with the existence

of radical exit is given by:

W(r)= [T Wy(s)W,,i(r,s.$)ds

- exP(‘W){érf,“v—Vgsisl[2+ (s- r)]&ds + Wo(r)}
(40)
where ¢ = ¢, given by Eq. (38).
The number fraction distribution, N(r) is therefore
given by: K
cxp(-r.tr){gbf:LNo(sJ[Z +(s= r]]qbds + Nn(r')}
f: e;\qzu(—g#r){fﬁl_r:u Nﬂ(.ﬂ[z +(s- r)]¢ds + NU{r)} dr
(a1

N(r)=
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First, we are to determine the functional form of Ny(r).
Suppose an initiator, whose decomposition rate constant
is ky, is used, the functional form of N, when the
independent variable is time, ¢ is given by:

kg exp(=kat)
I -exp(~kytz)

Note that No(f)dt shows the number fraction of

particles generated during the time interval between ¢ and

No(t) = (42)

t+d¢, without the existence of radical exit. From Eq. (39),
No(s) is given by:

NQ(S)= NO(t) a NO(')
klelP kl’IMO IP(l_x)

(43)

where [M],, is the initial monomer concentration in the
monomer-swollen micelles, and x is the monomer
conversion to polymer.

For a microemulsion polymerization, it was
reportedm]' 4] that the following equation describing the
conversion of monomer to polymer, x agrees reasonably
well with the experimental data, except for a high

conversion region:

x=1-exp(-ak,r?) (44)
where « is a constant defined by:
a=kpfiMu Ioldy 1. @5)

Mo

In Eq. (45), f is the initiator efficiency, [/o]. is the
initial initiator concentration in the water phase, m is the
molecular weight of monomer, and M, is the weight of
monomer initially charged per unit volume of water.

Note that any conversion-time relationship, including
the experimentally determined equation, can be used in
conducting the present theoretical investigation.

The relationship between the particle diameter D, and
the number of monomeric units » is given by:

N Dyp
6m

where N, is Avogadro’s number, and p is the polymer
density.

Hlustrative calculations of the PSD: We used the

following constants for the illustrative calculations;

(46)

p=|g/cm3, m =100, and akd=2x]0'6. The solid curve in
Fig. 10 shows the conversion development during
microemulsion polymerization, calculated from Eq. (44)
with ak,=2x10°. We set the reaction time, f; =20min,
and the conversion at that time is x =0.944. !

The fraction of initiator radicals generated Fi,;, is
represented by:
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N,_O—N,
NID*N.'JN

where N, is the number of initiator molecules, N, is that

Foniy =

(47

of the initial value, and N,, is that at r=ty.

The dashed curve in Fig. 10 shows £, when
k~1x10°s™". In the present example, because , is small,
new initiator radicals arc generated continuously,
resulting in a continuous production of new polymer
particles,

The solid curve in Fig. 11 shows the particle size
distribution without radical exit when £,[M,],=1000 s™'.
The particle size distribution is broad, with the number
average diameter 5,, =34.5nm and the coefficient of
variation CV=42.4%.

calculated PSD when the probability of radical exit,

The dashed curve shows the

¢ =5x10". In this case, the average number of radical

exit, ¢rp=3.08, where r; is defined by:
re= [tk M|, dt (48)

Next example is the case with 4,=1x107s" and No(r) is
broad in the present example, and the PSD with the

1.0 T T T =
0.8+
Initiator decomp.
z 06+ Fiis

e

3 0.4 4= -
02} I
0.0 | 1 1

0 5 10 15 20
Time |min|

Fig. 10 Conversion (x) and the fraction of initiator
radicals generated (Fj,;, defined by Eg. (47)) as a

function of time, with ak,~2x10 and k=1x1 0°s.

35x107 . :
30
251 .
20
5

With exit ¢ S Without exit w
Ny(D,}

N(D,)

0 10 20 30 40 50 60
Particle diameter; D,P |am|

Fig.11 Calculated particle size distribution with and
without radical exit for a slow initiator decomposition
with k=1x10°s".

existence of radical exit makes the distribution narrower,
with Bp=27.8nm and CV=39.1%. Similar theoretical
PSD profiles as Fig. 11 were reported earlier in ref.*”

k[ Mo],=200 s, while the other constants (except for
the ¢-value that will be discussed laler) are the same as
the previous example. The time development of x and
Fiyi for the present case is shown in Fig. 12. The aim of
the present cxample is to examine if small polymer
particles with a narrow dismribution can be synthesized in
microemulsion polymerization. It is obvious that a faster
initiation results in a narrower PSD. '

The solid curve in Fig. 13 shows the particle size
distribution without radical exit. The particle size
distribution _is very narrow, with 5,_, =32.0nm and
CV=6.7%. However, the exit of radicals from the
particles results in forming new particles, and the PSD
would become broader than this distribution.

The dotted curve shews the calculated PSD when the
probability of radical exit is ¢=1x10° where the
average number of radical exit, ¢rp =0.123. The
calculated PSD is still narrow, with 5ﬂ=30.5nm and
Cr=15.1%.

1.0 ) T T T
,°
08} ri [nitiator
f decomp.: Fy,

-E- 06 ™~ " n
s /
i 04l Conversion;: x =

024 N

{
0.0 1 ]
0 5 10 15 20
Time [min|

Fig.12 Conversion (x) and the fraction of initiator
radicals generated (Fj,;) as a function of time, with

ke1x107%7",

0.5 . : T :

04 — Without exit =
& e @ =1x10"
ec_ 03} ol |
. 0.2} |

0.1} |

0.0 basssetanzsnassannpisss |

10 15 20 25 30 = o

Particle diameter; l)P [nm]

Fig. 13 Calculated particle size distribution with and
without radical exit for a fast initiator decomposition
with k=1x107s".



Obviously, the PSD becomes broader as the ¢-value
increases, and when ¢ =5x10, the PSD is shown by the
dashed line in Fig. 13, with 5,, =26.4nm and
CV=26.2%.

From the theoretical point of view, the polymer
particles with small 5,, and CV could be produced if
(1) the initiation period is short enough compared with
the whole reaction time and (2) the polymerization is
stopped before the radical exit, namely, by keeping the
¢ri value small.

4 Conclusions

A simple computational method for the random
degradation of linear polymer chains is proposed. This
method works fast enough in a usual PC with high
precision and can be applied to any type of initial MWD.

In addition to the polymer degradation reactions, the
random degradation theory can be applied to various
interesting phenomena seemingly no resemblance to the
polymer degradation. The theory was applied to the
investigation of the effects of chain transfer reactions in
both conventional and living free-radical polymerization.
For the monomer transfer reactions, the accumulated
MWD can directly be predicted by application of the
random degradation theory. For living radical polymers,
the present theory can be used to determing the designed
number-average chain length I_’,,“,m-g,, that are not
broadened significantly by the monomer transfer

reactions. The f_’,, value must be significantly

design
smaller than 1/C,, where C, is the monomer transfer
constant.

The random degradation theory can also be used to
estimate the PSD
polymerization. It was found that the polymer particles
with small D, and CV could be produced under the

reaction condition where (1) the initiation period is short

formed in microemulsion

enough compared with the polymerization tin"ne, and at
the same time, (2) the polymerization must be stopped
before the particle size grows too large. The number of
polymerized monomeric units in a particle must be
significantly smaller than /¢, where ¢, is  the
probability of radical exit.
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