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The global cases of COVID-19 reported on the website of Center for Systems Science and 

Engineering at Johns Hopkins University are used to analyze the distribution by country. The 
relationship between rank and size (ranking plot) is approximately represented by the power-law 
distribution for the top countries, while the overall distribution follows the lognormal distribution. 
Assuming a continuous power-law distribution, the power exponent determined from the data leads 
to make the weight average infinity, which would be considered as gelation or pandemic. The 
distribution is rationalized by the discrete-time stochastic model that employs the weekly 
reproduction rate µ. The distribution of µ obtained for the time period, between April 20 and 
November 11, 2020 could be approximated by the gamma distribution. By assuming a gamma 
distribution for µ with various pairs of average and variance, the required conditions to stop the 
pandemic are (1) the average µ must be smaller than unity and (2) the time period for µ > 2 must 
be negligibly small.   
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1. Introduction 
 

On April 7, 2020, the Japanese government declared a 
state of emergency for the rapid spread of COVID-19 in 
Japan. On that weekend, one of the authors (HT) was 
staring abstractedly at the website of Center for Systems 
Science and Engineering at Johns Hopkins University,[1] 
listing a large number of the COVID-19 cases by country. 
Simply because there are so many numbers, HT 
examined the numbers, and tried the ranking plot, 
graphically showing the relationship between rank and 
size. Figure 1 shows the double logarithmic plot made at 
that time. Interestingly, the top countries appear to 
follow the power-law relationship. Recalling his own 
experience that a power law was found also in the 
infection tree of SARS in 2003,[2] and intrigued by the 
Zipf’s law like behavior, HT called for a volunteer to 
collect the data, and an undergraduate student, MF 
applied for this project.  
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Fig. 1 Conventional ranking plot. 
 

Fig. 1 shows a conventional type of ranking plot in 
which the y-axis shows the size and the x-axis shows the 
rank. Because the rank is proportional to the number 
fraction of countries whose size is larger than the 
corresponding size, when the axes are exchanged to plot 
the rank on the y-axis, the ranking plot shows the upper 
probability distribution given as follows. 

  
Rank ∝ N (x)dx

x

∞

∫ .   (1) 

In Eq. (1), N(x) shows the number-based probability 
density function (pdf). In the rest of this article, the rank 
is shown on the y-axis, representing the upper 
probability distribution. 
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The collected data from the website[1] during the 
period from April 11 to November 11, 2020 are analyzed. 
A discrete-time stochastic model proposed by 
Yamamoto[3] is used to rationalize the formation process 
of the obtained distribution.  Based on the analysis, the 
necessary conditions to stop the pandemic are proposed.  
 
2. Analysis of Distribution Data 
 
2.1 Power-Law Distribution 

Fig. 2 shows the ranking plot on the designated date. 
The power law seems to apply for the top countries, 
irrespective of the dates. 

   
N (x)dx

x

∞

∫ ∼ x−α  for large x’s.  (2) 

 

Fig. 2 Ranking plots on the designated dates. 
 

 The power exponent, α is approximately in the range 
of 0.7 – 0.9. Based on Eq. (2), the upper tail of the 
number-based pdf, N(x) is represented by: 

   N (x) ∼ x−α−1  for large x’s.   (3) 

An interesting characteristic of the power-law 
distribution is that when the pdf is converted to that on a 
weight basis W(x), the power exponent changes by one. 

   W (x) ∼ x−α  for large x’s.   (4) 

Equation (4) shows that the power exponent of the 
ranking plot is directly equal to the power exponent of 
the weight-based pdf. 

Assuming a continuous distribution, the weight 
average is obtained from the following equation. 

   
xw = xW (x)dx

0

∞

∫ ∼ x−α+1 dx∫ .  (5) 

Equation (5) shows that when the exponent (–α +1) is 
greater than or equal to –1, the integration goes to 
infinity. Therefore, the critical value of α is 2. 

The weight average is the expected size of the cluster 
when a unit is selected randomly, which corresponds to 

the onset of gelation in the polymer science.[4] In order 
for the expected cluster size to stay finite, α must be 
larger than 2. On the other hand, however, the obtained 
α-values are always smaller than 2 during the whole 
investigated period. This could be interpreted as 
pandemic. 

 
2.2 Lognormal Distribution 

Although the upper tail probability distribution could 
be represented by the power law reasonably well, the 
whole distribution, including the lower-ranked countries, 
is not.  

Fig. 3 shows the least-square fit by using the 
lognormal distribution. The whole distribution is well 
represented by the lognormal distribution. 

 

Fig. 3 Fitted curves by using the lognormal distribution. 
 
Recently, it has been argued that many power-law 

distributions reported earlier both for the social and 
natural sciences are just apparent, and do not fully 
conform to a strict power law,[5] and many of them are 
better represented by the lognormal distribution.[6] It is 
not straightforward to distinguish these two types of 
distribution. In this article, we do not go into the details 
of statistical discrimination. We just report the following 
two notable characteristics of the ranking plot of 
COVID-19: (1) the top countries appear to follow the 
power-law distribution, and (2) the overall distribution 
could be represented by the lognormal distribution. 
 
3. Model-Based Investigation to Elucidate the 
Ranking Plot 
 
  In COVID-19, the patients are isolated once they are 
found to be positive. Therefore, the infectious period is 
limited. Although there may be many hidden patients 
that are not counted as the cases reported on the Johns 
Hopkins’ website, we consider only the numbers 
reported therein. 
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  We employ a discrete-time stochastic model. Suppose 
the increase of cases during a certain period of time is 
Δxt, and the increase in the next time period is Δxt+1. The 
newly infected would be infectious, and let µt be the 
apparent reproduction rate, defined by: 

  µt = Δxt+1 Δxt .    (6) 

With the present simple model, the number of cases xt 

is represented by the following equations. 

  xt+1 = xt + Δxt .    (7) 

  Δxt = µt−1Δxt−1 .    (8) 

Yamamoto[3] investigated the present model, and 
found that x has a stationary power-law tail with x−α, if 
the following equation possesses a unique positive 
solution.  

  E(µt
α ) = 1 .    (9) 

where E represents the expectation of the distribution. 
Therefore, Eq. (9) is equivalent to: 

  
µα f (µ)dµ

0

∞

∫ = 1 .   (10) 

where f is the pdf of µ. 
The reported COVID-19 data showed a weekly 

fluctuation: the number tends to be small every Monday. 
In addition, one week would be a reasonable infectious 
time period, and we employ the weekly reproduction 
rate. 

 

 
Fig. 4 Distribution of the weekly reproduction rate µ. 

 
The histogram shown in Fig. 4 is the pdf of the weekly 

reproduction rate µ observed during the period, from 
April 20 to  November 11, 2020. The data for the top 120 
countries on October 17 are used. Note that the data of 
the lower ranked countries tend to involve Δxt = 0, as 
well as µ with extraordinary large magnitude. In addition, 

because the frequency to have µ > 4 is so small, we 
neglected such data to determine the µ distribution. The 
solid line shows the interpolation curve, connecting the 
center points of the histogram. This curve is used for the 
Monte Carlo (MC) simulation. 

In the MC simulation, the total number of countries is 
set to be N = 190, which is equal to that of the obtained 
data for the most of the investigated period. The initial 
values are set to be x0 = 0 and Δx-1 = 1 for all countries.  
Fig. 5 shows the MC simulation results after 50 weeks. 
Even though the initial values are the same for all 
countries, a wide variation among countries is generated. 
The upper figure, (a) shows that a power-law distribution 
applies for the top countries, with α = 0.8, which is 
approximately the same magnitude of α-value as shown 
in Figure 2. The lower figure, (b) shows that the whole 
distribution is represented reasonably well by the 
lognormal distribution. The important characteristics 
observed for the COVID-19 data are satisfied. Note that 
the distribution obtained for each trial of the MC 
simulation is different, however, these two 
characteristics always apply, at least, approximately. It is 
shown that the present discrete-time stochastic model 
can generate the distribution that satisfies two important 
characteristics of the COVID-19 distribution 
simultaneously. 

 
Fig. 5 MC simulation results at t = 50 weeks. 

 
Fig. 6 shows the distribution after 100 weeks. Two 

characteristics are satisfied also at t = 100 weeks. The 
magnitude of α is about 0.6, which is smaller than that 
shown in Figure 5. In fact, the magnitude of α decreases 
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with time. Assuming a continuous distribution, the 
weight average of the distribution goes to infinity when 
the α is less than or equal to 2, and a shift to a smaller 
α-value implies that the situation is getting worse if the 
present µ distribution is preserved. 

 

 
Fig. 6 MC simulation results at t = 100 weeks. 

 
Yamamoto[3] reported that Eq. (10) has a positive 

solution α, if E(lnµ) < 0 and 
  
lim
β→∞

E(µβ ) = ∞ . In our 

obtained data, E(lnµ) = 0.0523 > 0, and therefore, the 
distribution cannot reach the stationary state. It would be 
reasonable to think that if the average of µ, E(µ) is larger 
than unity, the number of cases continues to increase. 
The present data shows that E(µ) = 1.14 > 1. 

The numerical integration of Eq. (10), by using the 
continuous function f(µ) shown in the solid curve in Fig. 
4, leads to show that the trivial solution, α = 0 is the 
unique solution. There is no unique positive solution. 
This would be the reason for the continuous decrease of 
α with time, and the distribution cannot reach the 
stationary state. 

The present MC simulation shows that the present 
stochastic model satisfies two notable characteristics in 
the ranking plot simultaneously during the transient 
period. 

 
4. Suggestions to Stop the Pandemic 
 
  Assuming the present statistical model is valid and the 
upper tail of the ranking plot conforms to the power law, 

we consider the requirements to stop the pandemic. As 
discussed earlier, in order to keep the weight-average 
cases finite, the condition, α > 2 is needed. 

 Fig. 7 shows the least-square fit of the µ data, by 
using the gamma distribution, which is represented by 
the following equation. 

  
f (µ) = µm−1

Γ(m)ηm exp − µ
η

⎛
⎝⎜

⎞
⎠⎟

.  (11) 

The gamma distribution fits the data reasonably well. 
The determined values of two parameters are m = 10.79 
and η = 0.1003. 

 

 
Fig. 7 Least-square fit of the µ data by using the gamma 

distribution. 
 
With the gamma distribution, Eq. (10) is calculated to 

obtain the following equation. 

  
µα f (µ)dµ

0

∞

∫ = ηαΓ(m+α )
Γ(m)

= 1.  (12) 

Now, let us seek the values of m and η at the critical 
point, i.e., α = 2. Note that in order to keep the weight 
average of µ finite, α must be larger than 2. When α = 2, 
Eq. (12) reduces to: 

  η
2(m+1)m = 1 .    (13) 

The parameter, m is represented by using the number 

average of µ,   E(µ) = µ , as follows. 

 m = µ η .    (14) 

By substituting Eq. (14) into Eq. (13), one obtains: 

 
η = 1− µ2

µ
.    (15) 

Figure 8 shows the calculated results of Eq. (15). The 
right axis shows the variance σ2 of µ, which is given by: 

  σ
2 = mη2 =ηµ     (16) 
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Fig. 8 Magnitudes of η and σ2 as a function of µ  at the 
critical condition with α = 2. 

 
As shown in Fig. 8, when the average is close to unity, 

the µ distribution must be quite narrow with a very small 
variance, σ2. On the other hand, if the average is small 
enough, relatively broad distribution is allowed. 

Fig. 9 shows the critical distribution that leads to α = 2 
for µ  = 0.9, 0.8 and 0.7. A common characteristic for 

these curves is that the probability to have the time 
period to make µ > 2 is rather small.  

 

 
Fig. 9 Magnitudes of η and σ2 as a function of µ  at the 

critical condition with α = 2. 
 
On the basis of the results shown in Fig. 8 and Fig. 9, 

to stop the pandemic, (1) the average µ must be 

controlled to make µ  < 1, and (2) the time period for µ 

to be greater than 2 must be small enough. When the 
µ-value increases to approach 2, some strong measure to 
prevent the infection spread must be undertaken to make 
µ smaller. 

Fig. 10 shows the ranking plot in Japan. The x-axis 
shows the number of cases by the prefecture. Because 
the total number of prefectures is only 47 and the data 
points are too small, the statistical analysis is difficult to 
conduct. However, the power law with about α = 0.7 – 

0.8 seems to apply, which may show the statistical 
self-similarity with the world data, shown in Fig. 2. It 
would be reasonable to think that the above criteria for 
the prevention measure are valid also for the local area.  

 

 

Fig. 10 Ranking plot by the prefectures in Japan. 
 
5. Conclusions 
 
	 The global cases of COVID-19 reported on the 
website of Center for Systems Science and Engineering 
at Johns Hopkins University[1] are used to analyze the 
distribution by country. The relationship between rank 
and size (ranking plot) is approximately represented by 
the power-law distribution for the top countries. 
Assuming a continuous power-law distribution, the 
power exponent determined from the data shows that the 
weight average diverges to infinity. This fact may imply 
the pandemic, which corresponds to the present situation 
in 2020. 

On the other hand, the overall distribution, including 
the lower ranked countries, agrees reasonably with the 
lognormal distribution.  

Here, we report two notable characteristics in the 
global ranking plot of COVID-19 during the year 2020: 
(1) the top countries appear to follow the power-law 
distribution, and (2) the overall distribution could be 
represented by the lognormal distribution.  

These two characteristics are reproduced well by the 
discrete-time stochastic model that employs the weekly 
reproduction rate µ, during the transient period. On the 
other hand, the present µ distribution predicts that the 
infection status will get worse, without changing the µ 
distribution. 

The present µ distribution can be approximated by the 
gamma distribution. By assuming a gamma distribution 
is valid even when the infection situation changes, the 
required conditions to stop the pandemic are (1) the 
average µ must be made smaller than unity and (2) the 
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time period for µ > 2 must be kept small enough. 
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