Development of Reactor Neutrino Monitor — Evaluation of the background reduction of the prototype detector—

Tomoya MASUI*, Atsuya Kawabata*, Yoichi TAMAGAWA** and Kyohei NAKAJIMA ** (Received September 30, 2021)

Reactor neutrino monitor is a technology for remotely monitoring a reactor using anti-electron neutrinos generated from the reactor. Reduction of the background is important for detecting neutrinos, and previous studies have shown that the background for neutrinos is 100 times (S/N = 1/100). Currently, we have created a prototype for the development of a 1t size Gd-containing liquid scintillator for neutrino monitors with the goal of S/N = 1/100. In this paper, we evaluated the ability of the prototype to eliminate the background by pulse shape discrimination.

Key Words : Reactor Neutrino Monitor, Background, Liquid Scintillator

1. 緒 言

原子炉から発生する反電子ニュートリノを用いて 原子炉を遠隔から監視する技術である原子炉ニュー トリノモニターの開発を進めている.反電子ニュー トリノは相互作用がほとんど起こらず,検出頻度が 低いため、地上での測定は、バックグラウンドの排 除が重要な課題となっている.

先行研究では原子炉由来のニュートリノ事象に対 してバックグラウンド事象が 100 倍(S/N = 1/100)と いう結果が得られており,この結果を踏まえて、現 在 S/N = 1/10 を目標とした 1t サイズの波形弁別能力 を有する Gd 含有液体シンチレータ検出器の作成を 行っている.

本論では、目標とする検出器の約 1/100 の大きさ の試作機を作成し、作成した試作機の波形弁別を用 いたバックグラウンドの排除能力を評価し、結果に ついて検討する.

* 大学院工学研究科安全社会基盤工学専攻

** 原子力安全工学講座

* System and Infrastructure Engineering for Safe and Sustainable Society, Graduate School of Engineering

** Department of Nuclear Safety Engineering

2. 研究背景

2.1 原子炉ニュートリノモニター

原子炉ニュートリノモニターとは、原子炉内での 核分裂により発生する反電子ニュートリノを用いて、 原子炉の運転状況や核燃料内部の²³⁵Uと²³⁹Puの組 成比を遠隔でリアルタイムに監視する技術である.

またニュートリノは、弱い相互作用でしか反応し ないため、遮蔽による隠ぺいが困難であり、この技 術により IAEA(国際原子力機関)の核不拡散に貢献 できると考える. IAEA では、²³⁹Pu の兵器転用防止 のため IAEA の保障措置の元,核査察を行っている。 従来の方法では核燃料に対して、非破壊検査などに よる確認を行っているがこの方法では査察側,被査 察側の両方に負担がかかってしまう.そのため遠隔 からリアルタイムで監視でき、プラントシステムか ら独立した原子炉ニュートリノモニターの開発が注 目されている^[1].

原子炉ニュートリノモニター実用化のため、性 能として地上で測定可能,炉の運転に干渉しない, どこにでも設置可能、安価でコンパクトなどが求 められる.そのため,これらの条件を満たすこと のできる 1t サイズ程度のニュートリノ検出器の 開発を現在行なっている.

2.2 先行研究

2.2.1 SONGS 実験

SONGS(San Onofre Nuclear Generating Station)^[2]実 験とはアメリカで 2003 年から 2007 年にかけて行わ れていた実験であり,原子炉から発生した反電子 ニュートリノを用いた測定により,原子炉ニュー トリノモニターの実現性を示した実験である.

この実験は、地下 10m、原子炉から距離 24.5m の位置に検出器を設置し、原子炉由来のニュート リノ測定を行なった。ニュートリノ検出器として Gd 含有液体シンチレータを 0.64t, 宇宙線排除用 にプラスチックシンチレータ、中性子に対する遮 蔽材として 50cm 厚のポリエチレンが使用されて いる.

測定結果として,原子炉稼働時にニュートリノの検出効率が544±13/day,停止時に105±9/day と原子炉稼働時と停止時でニュートリノの検出 器に明確な差があることが確認できた.

2.2.2 PANDA 実験

PANDA(Plastic Anti -Neutrino Detection Array)実験^[3] とは、日本の北里大学が開発を行っている原子炉ニ ュートリノモニターの実験であり、特徴としてニュ ートリノ検出器として Gd 含有シートを巻いたプラ スチックシンチレータを検出器として用いている. プラスチックシンチレータは不燃性であるため、原 子炉施設内で測定する際に安全であるという点で優 れている。また特徴として1本10×10×100cm³のプ ラスチックシンチレータを 100 本組み合わせて検出 器として使用している.

2019年に関西電力の大飯原子力発電所の4号機の 原子炉から45m離れた地上でテスト測定を行ない, 結果としてニュートリノ事象に対するバックグラウ ンド事象の比(S/N)が1/100となり,原子炉由来の反 電子ニュートリノの有意性を確認するには、約20日 の測定を要することが確認された.

2.3 反電子ニュートリノ

ニュートリノとは、素粒子である中性レプトンの 一種で電子ニュートリノ、タウニュートリノ、ミュ ーニュートリノの3種類に分類できる.ニュートリ ノは電気的に中性であり、質量が非常に小さいため 弱い相互作用でしか反応せず、高い貫通力を有して いる.

また3種類のニュートリノには、それぞれ反粒子 が存在する.電子ニュートリノの反粒子である反電 子ニュートリノは、原子炉内で核燃料である²³⁵Uと ²³⁹Pu が核分裂し、 β 崩壊した際に発生する.1 核分 裂あたりに平均6個発生し、3GWの熱出力で1秒間 に約 6×10^{20} 個発生する.

2.4 液体シンチレータ

液体シンチレータとは、有機シンチレータの一種 で特徴として波形の減衰時間が短く、約10ns以下で ある.本研究では、逆β崩壊反応を用いて反電子ニ ュートリノを検出するため、ニュートリノ検出器と して陽子を多く含む液体シンチレータを使用した。 液体シンチレータを用いる利点として安価で大量に 作ることができる点、容器の形状に拡張性がある点、 溶質に添加材を加えることで容易に改良できる点な どが挙げられる.

液体シンチレータは, 主に溶媒, 溶質2つで構成 されており、溶媒には移動性に富み、励起されやす いπ電子構造を持つ有機物を使用することで溶媒間 でのエネルギー移行が起こりやすくすることができ る. 主な溶媒の例としてリニアアルキルベンゼン (LAB)やプソイドクメン、トルエンなどが挙げられ る。また原子力発電所で測定をする点から事故防止 のため毒性が低く、引火点が高いものを用いる必要 がある.溶質については,発光剤としての役割を持 つ第一溶質と波長変化剤としての役割を持つ第二溶 質の二つに分類できる. 第一溶質は, 溶媒から移行 されたエネルギーにより励起され、蛍光を発するた め蛍光効率や溶解度が重要である. 第二溶質は、第 一溶質で放出された光を吸収し、使用している光電 子増倍管の感度に合わせた波長の光を放出するもの を使用する必要がある.

これらの溶媒と溶質に加え、本実験では、添加物として Gd と Ultima Gold - F を加えた液体シンチレータを試作機として使用した.

2.5 原子炉由来の反電子ニュートリノの検出

原子炉由来の反電子ニュートリノは,検出器内で 起こる逆β崩壊反応を利用して,遅延同時計測法を 用いて検出する.逆β崩壊反応の式は,

$$\bar{\nu}_e + p \to e^+ + n \tag{1}$$

と表される。式(1)より有機シンチレータ内の陽子と 1.8MeV 以上のエネルギーを持つ反電子ニュートリ ノが反応し、陽電子と中性子を発生させる.

遅延同時計測法とは、図1のように逆β崩壊反応 により発生した陽電子が検出器内に落とすエネルギ ーと陽電子がエネルギーを落とし切った後、電子と 反応し、対消滅した際に発生する2本の511keVの 対消滅ガンマ線を先発信号,逆β崩壊反応により発 生した中性子が熱化してGdに中性子捕獲された際 に発生する合計のエネルギーが約8MeVとなる複数 のガンマ線を後発信号として,先発信号と後発信号 の時間差によりニュートリノ事象を検出する方法で ある.このときの先発信号と後発信号の時間差は約 数十µsである。Gdを使う理由として中性子捕獲断 面積が大きいという特徴があり,検出器内のGdの 濃度が高いほど先発信号と後発信号の時間差が短く なる.また遅延同時計測法を用いることで時間相関 のないバックグラウンド事象を排除することができ る.

図 1 遅延同時計測法を用いた反電子ニュートリノ の検出原理

2.6 バックグラウンド

遅延同時計測で排除できないバックグラウンド事 象として,偶発背景事象と高速中性子事象がある. 偶発背景事象は、先発信号として環境ガンマ線、後 発信号として環境ガンマ線などが遅延同時計測の時 間差内で偶然反応した事象である.高速中性子事象 は図2のように先発信号として高速中性子と弾性散 乱した反跳陽子が検出器内に落とすエネルギー,後 発信号として高速中性子が熱化して Gd に中性子捕 獲された際に発生する合計のエネルギーが約 8MeV となる複数のガンマ線が後発信号となり,ニュート リノ事象とよく似た時間差で発生するため遅延同時 計測で排除することが非常に困難である.これらの 事象を排除することが課題となっている.

図2 高速中性子事象の例

2.7 波形弁別

波形弁別とは,信号波形の違いからガンマ線と中 性子を弁別する方法である.ニュートリノ事象の先 発信号がガンマ線,高速中性子事象の先発信号が中 性子による反跳陽子であることからガンマ線と反跳 陽子の波形を弁別することでバックグラウンドであ る高速中性子事象を排除することできる.ガンマ線 と中性子では図3のように波形の減衰部分に差があ るため波形全体の積分値Qと波形の減衰部分に差があ るため波形全体の積分値Qと波形の減衰部分の積分 値Qtailの比であるQtail/Qにより弁別できる.Qに ついては波形の波高値の最大になる位置から20ns 前と120ns後の合計140nsの範囲、Qtailについて は波形の波高値の最大になる位置から36ns後の波 形が減衰し始める位置から84ns後までの範囲を積 分範囲とした.

3. 本研究の目的

先行研究である PANDA 実験が原子炉近傍の地上 でテスト測定をした際に,ニュートリノ事象に対し てバックグラウンド事象が 100 倍(S/N = 1/100)とい う結果が得られた.ニュートリノモニターの実用化 のためには,より少ない日数で原子炉由来の反電子 ニュートリノの有意性を確認する必要があるため, バックグラウンド事象のさらなる排除による S/N の 改善が重要な課題となっている。バックグラウンド 事象の内訳として偶発背景事象と高速中性子事象の 2 つが大部分を占めている。このうち高速中性子事 象は先発信号が中性子のため波形弁別により排除す ることができる.

そのため本研究では、高速中性子事象を排除できる lt サイズの波形弁別能を有する Gd 含有液体シン チレータの作成を行っている. PANDA 実験で使用 した検出器は波形弁別能力を有していないため本研 究で作成している検出器は、S/N の更なる改善が望 めるため性能として S/N = 1/10 を目標としている. 現在は,最終目標である 1t サイズの検出器の作成の 前に約 1/100 サイズの試作機を作成し、性能評価を 行っている.

本稿では、作成した試作機の波形弁別によるバッ クグラウンドの排除した際の S/N の改善ついての実 験結果を述べる.

4. バックグラウンド排除能力の評価

4.1 評価方法

先行研究の PANDA 実験のより S/N = 1/100 という結果が得られている.この結果をもとに試作機で 測定したバックグラウンドについて波形弁別により 高速中性子事象を排除した際の S/N の値で評価を行 なった.

4.2 実験に使用した試作機

実験には 8L の Gd 含有液体シンチレータを試作 機として使用した.使用した液体シンチレータの構 成は,溶媒として LAB,第一溶質として PPO,第二 溶質として Bis-MSB,添加物として,遅延同時計測 を行えるようにするために中性子捕獲断面積の大き い Gd と液体シンチレータに波形弁別能力を与える Ultima Gold-Fを使用した.液体シンチレータを入れ る容器として図 4 のアクリル製の 20cm×20cm× 20cm の立方体容器を使用した.また反射材としてデ ュポン社製のタイベックシートを容器全体に張り付 け使用した.測定時には,アクリル容器の両側に浜 松ホトニクス社製の光電子増倍管をつけ、アルミの ケースに入れて遮光し,測定を行なった.

図4 試作機に使用したアクリル容器

確認を行った.測定には、中性子線源である²⁵²Cfを 用いてニュートリノ事象と同様の時間相関をもつ事 象である高速中性子事象で遅延同時計測を行った. 2事象間の時間分布は、図5のようになった.時間 相関のある事象と時間相関のない事象が混ざった区 間を ΔT_{or} ,時間相関のない事象のみの区間を ΔT_{off} として $\Delta T_{on} - \Delta T_{off}$ をすることで時間相関のある事 象だけを取り出すことができる. 今回はΔTmの区間 を 2 µ s から 100 µ s, Δ T_{off}の区間を 202 µ s から 300 μs とした. また先発信号と後発信号のエネルギー スペクトルはそれぞれ図6と図7のようになった. 先発信号と後発信号のエネルギースペクトルについ て Δ Ton と Δ Toff の 両方で 3000keV 以下に環境ガンマ 線である⁴⁰Kと²⁰⁸Tlの事象が見られる.環境ガンマ 線による事象は、2 つの事象が偶然遅延同時計測の 時間差内で反応した偶発背景事象でない限り、時間 相関がないため、 $\Delta T_{on} - \Delta T_{off}$ をした際のエネルギ ースペクトルでは排除されていることが確認できた。 偶発背景事象を排除するため先発信号のエネルギー を 2000keV から 10000keV, 後発信号のエネルギー を 3000keV から 9000keV の領域の事象について遅 延同時計測を行った.

4.4 波形弁別能力の確認

次に波形弁別能の確認を行った.遅延同時計測に より $\Delta T_{on} - \Delta T_{off}$ を行い、時間相関のある事象かつ 対応する後発信号が 3000keV から 9000keV の領域 にある先発信号の事象について縦軸を Qtail/Q、横軸 をエネルギーとした2次元ヒストグラムで表すと図 8のようになった. Qtail/Q が 0.15 付近の事象が中性 子による事象で 0.1 付近の事象がガンマ線による事 象である.この先発信号の2次元ヒストグラムにつ いて 2000keV から 10000keV の領域で縦軸の Qtail/Q を射影した際のヒストグラムが図9のようになった. ガンマ線による事象が実際にニュートリノを測定す る際の先発信号の事象となるので、ガンマ線による 事象をガウス分布で Fit を行った. この際に得られ たガウス分布のパラメータであるμとσを用いて、 ガンマ線の事象が 95%以上残るμ+2σである Otail/O=0.11を中性子による事象をカットする際の カット位置とした.

図 8 ²⁵²Cf 測定における先発信号の 2 次元ヒストグ ラム

図9 図8の2次元ヒストグラムの縦軸 Qtail/Qを 2000keVから10000keVの領域で射影した ヒストグラム

5. 結果

福井大学の敦賀キャンパスの実験室でバックグラウ ンド測定を行なった.近くに原子力発電所などがな いため取得した事象は原子炉由来のニュートリノ事 象でなく、全てバックグラウンドによる事象とした. 測定したバックグラウンド事象について遅延同時計 測を行い, 先発信号の時間相関のある事象について 縦軸 Otail/O, 横軸をエネルギーとした2次元ヒスト グラムで表すと図10のようになった。縦軸のOtail/O を射影した際のヒストグラムが図11のようになり, 5.4 で決めたカット位置である Otail/O = 0.11 より右 の事象を高速中性子による事象として排除すること で高速中性子事象を含むバックグラウンドによる事 象を 62%排除することができた. 先行研究である PANDA 実験が遅延同時計測を行った後の S/N が S/N=1/100になるのに対して、今回作成した試作機 は、S/N=1/38という結果が得られた.

図 10 バックグラウンド測定における先発信号の 2 次元ヒストグラム

図 11 図 10 の 2 次元ヒストグラムの縦軸 Qtail/Q を 2000keV から 10000keV の領域で射影した ヒストグラム

6. 結論

現在福井大学では、原子炉から発生する反電子ニ ュートリノを利用して遠隔から原子炉の運転状態や 核燃料の組成比を監視するニュートリノモニターの 研究を進めている.実用化のためには、地上で測定 可能、炉の運転に干渉しない、コンパクトで安価で あるといった性能が求められる.

ニュートリノ事象の測定には、逆β崩壊反応を利 用し、遅延同時計測を用いることでニュートリノ事 象を検出しつつ、時間相関のない事象を排除するこ とができる.先行研究より地上で測定する際は、遅 延同時計測を用いてもニュートリノ事象に対してバ ックグラウンド事象が 100 倍(S/N = 1/100)であるこ とが分かっており、さらなるバックグラウンド事象 の排除が重要な課題となっている.この遅延同時計 測で排除できないバックグラウンド事象の内訳とし て偶発背景事象と高速中性子事象の2 つ大きな割合 を占める。高速中性子事象に対しては、先発信号が 中性子による反跳陽子であるため波形弁別により排 除することができる.

本研究では、SN = 1/10 を目標とした lt サイズの Gd 含有液体シンチレータの開発を行っており、前段 階として 1/100 サイズの試作機を作成し、バックグ ラウンド排除能力の評価を行った. 試作機には、 20cm×20cm×20cm のアクリル容器と波形弁別能力 を有する Gd 含有液体シンチレータを使用した.

試作機の遅延同時計測と波形弁別能力の確認のため中性子線源である²⁵²Cfを用いて測定を行った. 今 遅延同時計測のカット条件について、 $\Delta T_{on} \ge 2 \mu s$ から 100 μs , $\Delta T_{off} \ge 202 \mu s$ から 300 μs , 先発信号のエネルギーを 2000keV から 10000keV, 後発信号 のエネルギーを 3000keV から 9000keV とし, 高速中 性子事象のカット条件として Qtail = 0.11 右の事象 を中性子による事象とした.

試作機のバックグラウンド排除能力を評価するため実際にバックグラウンドを測定した.結果として 波形弁別によりバックグラウンド事象が 62%排除す ることができ, S/N = 1/38 に改善された.

今後は、さらなる S/N 改善のため容器の形状を変 えてバックグラウンド排除能力を評価することと今 回行った波形弁別法より弁別能力の高い Shape Indicator 法^[4]による高速中性子事象の排除を行って いく予定である.

参考文献

- Final Report: Focused Workshop on Antineutrino Detection for Safeguards Applications 28-30 October 2008 IAEA Headquarters, Vienna .
- [2] N. S. Bowden et al., "Observation of the isotopic evolution of pressurized water reactor fuel using an antineutrino detector", Journal of Applied Physics 105, 064902 (2009).
- [3] Tomoyuki Konno, "Measurement of reactor neutrinos using plastic scintillator array on the ground", Applied Antineutrino Physics 2019, Guangzhou city, China, Dec.7 2019 (presentation).
- [4] Yoichi Tamagawa et al., "Alpha–gamma pulse-shape discrimination in Gd₃Al₂Ga₃O₁₂ (GAGG):Ce³⁺ crystal scintillator using shape indicator", Nuclear Instruments and Methods in Physics Research A 795 (2015) 192–195.