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Emulsion polymerization proceeds in a unique locus of polymerization, having confined 

submicron space with a higher polymer concentration from the beginning of polymerization. 
Assuming the ideal polymerization kinetics during Interval II in emulsion polymerization, the 
branched architecture formed by the chain transfer reaction to the polymer is investigated by using 
a Monte Carlo simulation method, both for the conventional and the living free-radical 
polymerization (FRP). The conventional FRP leads to form a broad molecular weight distribution 
(MWD), while the living FRP gives a rather narrow MWD. The expected contraction ratio g of the 
mean-square radius of gyration Rg2 of the branched polymer to that of a linear polymer for a given 
number of branch points k is essentially the same, at least approximately, both for the conventional 
and the living FRP, irrespective of the reaction condition, and a universal equation is proposed for 
the g-k relationship. The magnitude of Rg2 can be represented by using the maximum span length 
LMS, Rg2 = 0.172 LMS, both for the conventional and the living FRP. Similar relationships, Rg2 = a 
LMS with a = 0.17–0.18 apply to various types of branched polymers, and could be considered as a 
universal relationship. 
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1. Introduction 
 

Polymerization is a reaction process in which 
monomers are converted to polymers, and therefore, the 
weight fraction of polymer increases just linearly with 
the monomer conversion x, as shown by the dotted line 
in Fig. 1 for usual bulk polymerization. On the other 
hand, the locus of polymerization in emulsion 
polymerization is the polymer particle, which is 
schematically shown in Fig. 2. After a short nucleation 
period, called Interval I, the weight fraction of polymer 
in the polymer particle is approximately kept constant 
until the depletion of monomer droplets, due to the 
monomer transfer from the monomer droplets to the 
polymer particles. The constant polymer weight fraction 
period, which leads to a constant polymerization rate 
period in a typical emulsion polymerization, is called 
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Fig.1 Polymer weight fraction development in the 
polymerization locus during emulsion (solid line) and 
bulk polymerization.  
 

 
Fig. 2 Illustration of the emulsion polymerization during 
Interval II. 

 

けて検出器の大型化を行う必要がある．将来的には，

1 t 級の LiLS を用意する必要がある．また波形弁別

能は LiLS が大きくなれば，悪くなることが分かって

いるため，まずは 1 kg といった 1/1000 サイズの試作

機を作製し，大型化に向けて検討を行っていく必要

がある． 
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Interval II. Assuming the nucleation period is small 
enough, the weight fraction of polymer in the polymer 
particle changes as shown by the solid line in Fig. 1. In 
this article, the branched polymer formation due to the 
chain transfer to polymer is investigated theoretically 
during Interval II. 
 

kfp

 
Fig. 3 Schematic representation of the process of chain 
transfer to polymer in free-radical polymerization (FRP). 

 
Fig. 3 shows the process of chain transfer to polymer, 

leading to the long-chain branching. The rate Rfp of chain 
transfer to polymer is represented by: 

  
Rfp = kfp[R

•][M]0 xc       (1) 

where kfp is the rate constant for the chain transfer to 
polymer, [R•] is the radical concentration, [M]0 is the 
initial monomer concentration, and xc is the weight 
fraction of polymer in the polymer particle, which is 
equal to the monomer conversion at which the monomer 
droplets are depleted, as shown in Fig. 1. In usual 
polymerization in a homogeneous medium, Rfp is zero at 
conversion x = 0, because polymer is not present. On the 
other hand, Rfp is large from the beginning in emulsion 
polymerization. Emulsion polymerization promotes the 
branching reaction. 

The rate Rp of polymerization is given by: 

  
Rp = kp[R

•][M]0 1− xc( )      (2) 

where kp is the propagation rate constant. 
The branching density ρ is defined as the fraction of 

units that bear a tri-branch point. The instantaneous 
branching density is given by the rate ratio of Rfp and Rp, 
which is given by: 

  
ρ =

Rfp

Rp

= Cfp

xc

1− xc

      (3) 

where Cfp (= kfp/kp) is the chain transfer constant to 
polymer. Equation (3) shows that the branching density 
is kept constant throughout Interval II, investigated in 
this article. 

Although the branching density of the whole polymer 
is kept constant, the branching density or the probability 
of possessing a branch point in a unit in chain is different, 

depending on when the unit is incorporated into the 
polymer chain. The units that are incorporated in the 
earlier stage of polymerization are subjected to the 
polymer transfer reaction for a longer period of time, 
compared with those bound in the later stage of 
polymerization. The branching density of a unit in chain 
is a function of the time when the monomer turns into 
polymer.  

The total number n of monomeric units incorporated 
into polymer in a polymer particle increases with time. 
Suppose n = np at the present time. The expected 
branching density ρunit of a unit bound into polymer at n 
= nb is given by the following equation.[1]  

  
ρunit (nb ,np ) = Cfp

xc

1− xc

ln
np

nb

⎛

⎝
⎜

⎞

⎠
⎟  for Interval II.  (4) 

Fig. 4 shows the calculated result of the branching 
density distribution represented by Eq. (4) at np = 1x106. 
A large variation in the branching density distribution is 
an important characteristic of emulsion polymerization, 
although the average branching density (= ρ) is kept 
constant throughout Interval II. 

 

 
Fig. 4 Branching density distribution ρunit during Interval 
II at np = 1x106, calculated from Eq. (4). 

 
When discussing the branched polymer architecture, 

the primary polymer chain[2] is a useful concept. The 
primary polymer chain is a linear chain when all branch 
points are severed. In the conventional FRP, each 
primary chain is formed instantaneously, therefore, Fig. 
4 shows that the primary chains that are formed in the 
earlier stage of polymerization possess a larger 
branching density than those formed in the later stage of 
polymerization. The variation in the branching density is 
among the primary chains in the conventional FRP. 

On the other hand, in the living FRP, or the 
reversible-deactivation radical polymerization in the 
IUPAC terminology,[3] the variation in the branching 
density is observed along the sequence of a primary 
polymer chain. Note that when the growing primary 
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chain causes the polymer transfer reaction, this primary 
chain becomes a dead primary chain, while a new 
growing primary polymer chain is formed from a radical 
on a backbone chain. 

In this article, the statistical properties, such as the 
molecular weight distribution and the radius of gyration, 
of the branched polymer molecules formed in the 
conventional and the living emulsion polymerization are 
investigated, seeking for newer methods to design and 
control the branched polymer architecture. 
 
2. Method 
 

The Monte Carlo simulation method to generate the 
branched polymer architecture of each polymer molecule 
is described in detail in ref.[4] As described therein, the 
number fraction distribution Np(r) of the primary 
polymer chains in emulsion polymerization during 
interval II is typically given by the following most 
probable distribution.  

  
Np(r) = 1

Pnp

exp − r
Pnp

⎛

⎝
⎜

⎞

⎠
⎟      (5) 

where r is the chain length, and 
  
Pnp  is the 

number-average chain length of the primary polymer 
molecules.  

For the living FRP, the termination reaction is 
neglected, and the average number of monomeric units 
added during a single growth period is set to be 2, as was 
done earlier.[4,5]  

The statistical analysis is conducted when the number 
of monomeric units polymerized in a polymer particle 
reaches n = 1x106. Assuming that the molecular weight 
of the monomer is 100, and the density of polymer is 1 
g/cm3, the diameter of a dried polymer particle at n = 
1x106 is 68 nm, which conforms to a normal emulsion 
polymerization experiment during Interval II. A large 
number of polymer particles are simulated to determine 
statistically valid properties.  

 
3. Results and Discussion 
 
3.1 Calculation Conditions 

The systematic analyses are conducted by using the 
conditions shown in Table 1. C1–C4 are the 
conventional FRP, and L1–L4 are the living FRP.  

The branching probability Pb, which is the probability 
for a primary polymer chain end to be connected to the 

backbone polymer chain is increased from 0.2857 (top: 
C1, L1) to 0.8333 (bottom: C4, L4).  

 
Table 1. Calculation conditions 

Run   Pn
1) ρ2)   

Pnp
3) Pb

4) 

C1, L1 200 0.002 142.9 0.2857 
C2, L2 500 0.002 250 0.5 
C3, L3 1000 0.002 333.3 0.6667 
C4, L4 1000 0.005 166.7 0.8333 
1) The number-average chain length of the product polymers.  
2) The average branching density of the product polymer. 3) The 

number-average chain length of the primary polymer chains.  
4) The probability that the chain end of a primary chain is 

connected to the backbone chain, named branching probability.  

 
Fig. 5 shows the weight fraction distribution of the 

primary chains. In the figure, PDI means the 
polydispersity index, which is the ratio between the 
weight- and number-average, representing the degree of 
breadth of the chain length distribution. For the 
conventional FRP, PDI = 2 for all C1–C4, because the 
PDI of the most probable distribution is 2.  

For the living FRP, the smooth low molecular weight 
curve represents the primary chains that have 
experienced chain stoppage through the polymer transfer 
reaction. In L1, most primary chains do not experience 
the polymer transfer reaction, which is represented by 
the sharp high molecular weight peak. On the other hand, 
most of the primary chains in L4 are subjected to the 
polymer transfer reaction to form a distribution close to 
the most probable distribution whose PDI is nearly 2.  
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Fig. 5 Primary chain length distribution. 

 
3.2 Molecular Weight Distribution (MWD) 
3.2.1 Conventional FRP 

Fig. 6 shows the weight fraction distribution of the 
product branched polymers for the conventional FRP at n 
= 1x106. As the branching probability Pb increases, the 
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distribution becomes broader, and PDI is as large as 109 
for C4. The distribution is broader than the random 
branching of the same primary polymer chains,[4] and it 
is shown that the present type of nonrandom distribution 
of branch points, represented by Eq. (4) and Fig. 4, leads 
to a broader molecular weight distribution in the 
conventional FRP.  

When Pb is large, as in the cases of C3 and C4, 
another high molecular weight (MW) peak appears. This 
high MW peak is formed because of the limitation of the 
small particle size. In the present simulation, the total 
number of monomeric units incorporated into polymer 
molecules in a particle is n = 1x106, and therefore, it is 
impossible to form a polymer molecule whose chain 
length (degree of polymerization) is larger than 1x106. In 
fact, the polymer molecules in the high MW peak in C4 
are the largest polymer molecule in each polymer 
particle. These polymer molecules want to grow further, 
but they cannot because of the limitation of the particle 
size. This type of confined space effect may become 
important in nonlinear emulsion polymerization. 

 

 
Fig. 6 Weight fraction distribution of the product 
polymers at n = 1x106, for the conventional FRP, C1–C4. 

 
Another interesting characteristic of the conventional 

FRP conducted in a constant polymer/monomer 
condition is that the MWD of the high MW tail follows 
the power law, represented by the following 
weight-based distribution function.[6,7]  

  W (r) ∝ r−1 Pb ,      (6a) 

or equivalently, in the number-based functional form: 

  N (r) ∝ r− 1 Pb+1( ) .      (6b) 

Fig. 7 shows the doble logarithmic plot of the number 
fraction distribution N(r) of C1–C4. The power-law 
distribution represented by Eq. (6b) is confirmed, 
including the bimodal distributions observed for C3 and 
C4 shown in Fig. 6. Because the slope is related with Pb, 
the power-law distribution can be used to determine the 

chain transfer constant experimentally.[7]  
 

 
Fig. 7 Double logarithmic plot of the number fraction 
distribution N(r) of the polymers formed in the 
conventional FRP, C1–C4. 

 
The red bimodal MWD shown in Fig. 8 is the 

experimental result reported for the emulsion 
polymerization of ethylene,[8] which is known to have a 
large frequency of branching through chain transfer to 
polymer. A bimodal MW distribution, as in the case of 
C4, is observed. When the MWD, W(log10M) is 
converted to W(M) and plotted in the doble logarithmic 
form, one obtains the dotted curve, showing a power-law 
relationship for the important MW region. Pb = 1/1.23 = 
0.813 leads to give the chain transfer constant Cfp that 
agrees reasonably well with the reported value.[7]  

 

 
Fig. 8 MWD of the emulsion-polymerized polyethylene, 
reported in ref.[8] In the figure, M is the molecular 
weight, and is related with chain length (degree of 
polymerization) r by M = 28 r. 
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3.2.2 Living FRP 

Fig. 9 shows the simulated weight fraction distribution 
for L1–L4. Although the branching density ρ is the same 
as for the corresponding conventional FRP, for example 
L1 and C1, significant broadening of the MWD, as was 
observed for the conventional FRP, is not found. In fact, 
the distribution is narrower than the random branching of 
the same primary chains.[4] The polymers with extremely 
large MW are not formed in the living FRP. 

 

 
Fig. 9 Weight fraction distribution of the product 
polymers at n = 1x106, for the living FRP, L1–L4. 

 
Table 2 shows how the PDI changes with branching. 

Interestingly, the PDI does not change significantly in 
the living FRP, which is a notable difference in contrast 
to the conventional FRP. Note that the primary chain 
length distribution cannot be determined in a 
straightforward manner in a usual emulsion 
polymerization experiment, and all one can obtain is the 
MWD of the product polymers. It may be difficult to 
find the existence of branches, judging solely from the 
product polymer distribution because the PDI values are 
so small. 

 
Table 2 Polydispersity index (PDI) of the primary chains 
and the product branched polymers, for L1–L4. 
 Primary chains Product polymers 

L1 1.25 1.27 
L2 1.48 1.51 
L3 1.71 1.78 
L4 1.92 2.15 

 
3.3 Radius of Gyration 

The mean-square radius of gyration Rg2 describes the 
spatial dimension of the polymer. To highlight the effect 
of branching in polymer, the g-ratio of Rg2 of the 
branched polymer to that of a linear polymer is a useful 
measure.  

  
g =

RgBranched
2

RgLinear
2 .      (7) 

As a standard branched polymer structure, the 
Zimm-Stockmayer equation[9] that describes the random 
branching of the primary chains with the most probable 
distribution has been used widely. The expected g-value 
for the polymer molecules having k branch points is 
given by: 

[Zimm-Stockmayer] 

  
g = 1+ k

7
⎛
⎝⎜

⎞
⎠⎟

0.5

+ 4k
9π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−0.5

     (8) 

Note that the branched architecture formed in the 
present emulsion polymerization system is not random, 
as shown by the branching density distribution in Fig. 4. 
For the primary chain length distribution, the most 
probable distribution applies for the conventional FRP, 
but not for the living FRP, as shown in Fig. 5. 

Fig. 10 shows the g-k relationship for C4. Each red dot 
represents a pair of values for each polymer molecule, g 
and k. The blue open circles show the average within the 
intervals of Δk, representing the expected g-value for a 
given k. 

 

 
Fig. 10 Relationship between g and k for C4. 

 
Fig. 11 shows the expected g-k relationships for the 

conventional FRPs. It is interesting to note that the 
relationships stay nicely on a single universal curve, 
irrespective of the calculation condition.  

The black solid line shows the Zimm-Stockmayer 
theory, represented by Eq. (8), and the conventional FRP 
shows smaller g-values, i.e., smaller radius of gyration. 
Because the primary chains in C1–C4 follow the most 
probable distribution, which is the same as the 
assumption used in the Zimm-Stockmayer theory, the 
difference must come from the nonrandom connection of 
the primary chains. The compact architecture formed in 
the conventional FRP, compared with the random 
branching, could be rationalized, based on the branching 
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density distribution shown in Fig. 4. In the conventional 
FRP, each primary chain is formed instantaneously, and 
the primary chains formed in the earlier stage of 
polymerization are expected to possess larger values of 
branching density. These primary chains are likely to 
bear a large number of branch chains, leading to form a 
core region, resulting in an overall star-like architecture. 
This would be the reason for showing smaller g-values.  

Incidentally, Eq. (8) represents g  k-0.5 for the large k 
region, while the simulation results show g  k-0.8, as 
represented by the dotted line in Fig. 11b. This finding 
will be used to find the universal g-k relationship. 

 

 
Fig. 11 Relationship between g and k for the 
conventional FRP, C1–C4. (a) Normal plot. (b) Double 
logarithmic plot. 
 

Fig. 12 shows the g-k relationships for the living FRPs, 
L1–L4. A slight increase by the branching probability Pb 
is observed, however, the difference is rather small, and 
it could be considered essentially the same g-k 
relationship for all conditions.  

The solid black curve shows the Zimm-Stockmayer 
theory, and the g-k relationship appears to be close. On 
the other hand, this seemingly close relationship is just 
coincidental, because the primary chain length 
distribution is much different from the most probable 
distribution, as shown in Fig. 5.  

It is already known that the narrower primary chain 
length distribution leads to a smaller g-value in the 
random branched polymers.[10] For the primary chains 
that follow the Schulz-Zimm distribution, the following 
equation was proposed. 

[Random branch of the Schulz-Zimm chains] 

  
g = 1+ k

5+ PDI
⎛
⎝⎜

⎞
⎠⎟

0.5

+ 4k
1+ 4PDI( )π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−0.5

   (9) 

Note that the Schulz-Zimm distribution, or the Gamma 
distribution in the mathematical term, is a generalized 
form of the most probable distribution, and Eq. (9) 
reduces to Eq. (8) when PDI = 2. 

The primary chain length distribution becomes 
broader in the order from L1 to L4, and therefore, it 
could be expected that the g-value increases from L1 to 
L4. However, the obtained g-k relationship is essentially 
the same, as shown in Fig. 12. 
 

 
Fig. 12 Relationship between g and k for the living FRP, 
L1–L4. (a) Normal plot. (b) Double logarithmic plot. 

 
To remove the difference of primary chain length 

distribution, the g-k relationships for the random 
branched polymers of L1–L4 conditions shown in Fig. 5 
are determined by using the MC simulation. Fig. 13 
shows the comparison. When the branching probability 
Pb is small (L1), the g-value is larger than the 
corresponding random branch case, but the difference 
becomes smaller as Pb increases, and the g-value is 
smaller than the random branch in L4.  

Incidentally, the black solid curves for the random 
branched polymers in Fig. 13 are calculated from Eq. (9), 
and they agree with the MC simulation results well, even 
though the primary chain length distribution assumed is 
different from the Schulz-Zimm distribution. Equation 
(9) could be used to estimate the g-values of the random 
branched polymers in general. 
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Fig. 13 Comparison of the g-k relationship. The primary 
chain length distribution is set to be the same for the 
corresponding cases. 

 
For L4, most primary chains experience the chain 

stoppage due to the chain transfer reaction, as can be 
guessed from the primary chain length distribution 
shown in Fig. 5. In this case, the situation is similar to 
the conventional FRP. The primary chains formed earlier 
are expected to possess a larger number of branch chains, 
and a core region could be formed. It is reasonable to 
consider that more compact architecture is formed, 
compared with random branching. 

On the other hand, in L1, most primary chains do not 
experience chain stoppage, and the branching density 
distribution shown in Fig. 4 is expected to be observed 
along the sequence of a primary chain. The probability of 
possessing a branch point is higher for the units located 
closer to the starting point. If these earlier incorporated 
units are subjected to the chain transfer reaction at the 
earlier stage of polymerization, the length of the 
connected branch chains could be long, because they 
have enough time for growth. This type of event would 
introduce a long linear polymer part in the formed 
branch polymer molecule, which makes the radius of 
gyration larger. This would be the reason for obtaining a 
larger g-value, compared with the random branching. 

As the branching probability Pb increases, the primary 
chain length distribution becomes broader, which would 
make the g-value larger. On the other hand, a larger Pb 
tends to reduce the above enlarging effect caused by the 
branching density distribution along the chain. In the 
case of L4 in which most of the primary chains 
experience chain transfer reaction, the branching density 
distribution is found among the primary chains, not 
along the chain. The g-value is reduced by the branching 
density distribution in the case, L4.  

 
3.4 Universal g-k Relationship 

As shown in Fig. 11 and Fig. 12, it appears that while 
the g-value for the conventional FRP is significantly 
smaller than the Zimm-Stockmayer equation, the g-value 
for the living FRP is rather close to the 
Zimm-Stockmayer relationship. On the other hand, it is 
worth noting that the range of the k-values is much 
different. Even though the average branching density is 
the same for the corresponding conventional and living 
FRP, huge polymer molecules are not formed in the 
living FRP, as shown in the weight fraction distribution, 
Fig. 9. The branch points are distributed among polymer 
molecules much more evenly in the living FRP. 

 

 
Fig. 14 Universal g-k relationship found for both the 
conventional and living FRP. (a) Normal plot. (b) 
Double logarithmic plot. 

 
Fig.14 shows the g-k relationship for C4 and L4, 

plotted on the same sheet. Both relationships agree well. 
Note that the g-k relationships of C1–C4 lie on a single 
curve (Fig. 11), and in addition, L1–L4 agree well (Fig. 
12). Therefore, the g-k relationships for all cases can be 
described by a single universal curve, i.e., the black 
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dotted curve, which is given by the following empirical 
equation. 

[Emulsion polymerization during Interval II] 

  
g = 1+ k

12
⎛
⎝⎜

⎞
⎠⎟

0.5

+ k
5π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−0.8

    (10) 

The above universal relationship for the emulsion 
polymerization during Interval II, which is applicable 
both for the conventional and living FRP, is proposed 
here. 

 
3.5 Relationship between Rg2 and the Maximum Span 
Length, LMS  

In a branched polymer molecule, there are many chain 
ends, as shown in Fig. 15. Within various combination of 
two chain ends, the longest one is named the maximum 
span chain, whose length is described as LMS. It is 
reasonable to consider that LMS has a dominant effect on 
the mean-square radius of gyration, Rg2. 

 

 
Fig. 15 Schematic representation of the maximum span 
chain (red), whose length is represented by LMS. 

 
In this article, LMS is represented by the number of 

monomeric units, and therefore, Rg2 used here is the one 
when each monomeric unit is considered as a freely 
rotating segment. Obviously, a segment consisting of any 
number of monomeric units can be used, as long as the 
number of segments is large enough. The above 
definition (one monomeric unit forms a segment) is 
needed only for the absolute values of Rg2 and LMS 
plotted on the figures.  

Fig. 16 shows the Rg2-LMS relationship. Each red dot 
represents a pair of values for each polymer molecule, 
Rg2 and LMS. The blue open circles show the average 
within the intervals of ΔLMS, representing the expected 
Rg2-value for a given LMS. Nice linear relationship is 
observed. 

Fig. 17 shows the expected Rg2 for the conventional 
FRPs. All C1–C4 fall nicely on a single line, Rg2 = 0.172 
LMS. 

Fig. 18 shows the Rg2-LMS relationships for the living 
FRPs. Again, all the relationships for L1–L4 fall on the 
same line, Rg2 = 0.172 LMS. The relationship, Rg2 = 

0.172 LMS applies both for the conventional and living 
FRP.  

 

 
Fig. 16 Relationship between Rg2 and LMS for the case 
with C4. 
 

 
Fig. 17 Relationship between Rg2 and LMS for the 
conventional FRP, C1–C4. 

 

 
Fig. 18 Rg2-LMS relationship for the living FRP, L1–L4. 
 

Essentially the same linear relationship is valid for 
various types of branched polymers, as summarized in 
Table 3. The relationship, 

  Rg 2 LMS = 0.17 – 0.18     (11) 

applies universally for various types of branched 
polymers that include randomness in their architecture. 
The value of a is a little larger than 1/6 = 0.167 for linear 
polymers, which implies that the polymer chains other 
than the maximum span chain contribute slightly to 
increase the a-value.  

In order to synthesize branched polymers with large 
radius of gyration, one should design a branched 
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architecture whose maximum span length is large. 
Because LMS is a one-dimensional property, it is much 
easier than directly imagining complex 3D architectures 
for the molecular design. 

 
Table 3 Linear relationship Rg2 = a LMS, found for 
various types of polymers. 

Polymer type a 
Emulsion polymerization during Interval II: 
Conventional FRP with chain transfer to 
polymer 

0.172 

Emulsion polymerization during Interval II: 
Living FRP with chain transfer to polymer 

0.172 

Random branching of polymer chains[10]  0.178 
Hyperbranched polymers formed in step 
polymerization of AB2-type monomer conducted 
in a batch reactor or in a CSTR[11]  

0.18 

Hyperbranched polymers formed in 
self-condensing vinyl polymerization (SCVP) 
conducted in a batch reactor or in a CSTR[12] 

0.18 

Linear polymers[9] 0.167 
Dendrimer[11,12] 0.5 
 
4. Conclusions 
 

The branched architecture formed in the conventional 
and living emulsion polymerization that involves chain 
transfer to polymer was investigated theoretically. The 
simulations were conducted for Interval II, where the 
polymer/monomer ratio is kept constant. 

The MWD formed in the conventional FRP can be 
very broad, and a bimodal MWD could be formed when 
the branching probability Pb is large enough. The high 
MW tail follows the power law, W(r) −α α = 1/Pb. 
Controllable power-law distribution can be obtained by 
using the conventional FRP. 

The living FRP leads to form rather narrow MWD. 
One may overlook the formation of branches, judging 
solely from the formed MWD. 

Both for the conventional and living FRP, the g-k 
relationship is represented by the following universal 
relationship [Eq. (10)], which gives smaller g-value 
compared with the Zimm-Stockmayer formula.  

  
g = 1+ k

12
⎛
⎝⎜

⎞
⎠⎟

0.5

+ k
5π

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−0.8

 

Both for the conventional and living FRP, the 

relationship between the mean-square radius of gyration 
Rg2 and the maximum span length LMS is represented by 
Rg2 = 0.172 LMS. For various types of branched polymers, 
from the polymers with long-chain branches to the 
hyperbranched polymers synthesized through various 
types of reaction/reactor, the following simple 
relationship applies. [Eq. (11)] 

  Rg 2 LMS = 0.17 – 0.18  

For example, to produce branched polymers having a 
large radius of gyration, one should think of a production 
process that leads to give larger values of maximum span 
length, LMS.  

The present work would shed new light on the 
production technologies for various types of branched 
polymers with controlled architecture.  
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