原子炉ニュートリノモニター開発に向けた PSD 能力を有した Li 含有液体シンチレータの発光特性評価 川端 孝弥* 増井 友哉* 中島 恭平** 玉川 洋一** 鈴木 耕拓***

The luminescence characteristics of Li loaded liquid scintillator for the development of Reactor neutrino monitor

Atsuya KAWABATA^{*}, Tomoya MASUI^{*}, Kyohei NAKAJIMA^{**}, Yoichi TAMAGAWA^{**} and Kohtaku SUZUKI^{***}

(Received September 30, 2021)

Reactor neutrino monitor is a technology that monitors the fuel composition inside the reactor by observing electron anti-neutrinos generated from the reactor. We developed a Li loaded liquid scintillator (LiLS) that has Pulse Shape Discrimination (PSD). In this paper, we reported the results of light yield, pulse shape discrimination and neutron capture measurement.

Key Words : reactor neutrino monitor, Li-loaded liquid scintillator, light yield, pulse shape discrimination

1. 緒 言

原子炉ニュートリノモニターは原子炉稼働時に発 生する反電子ニュートリノ事象を用いて,原子炉内 部の稼働状況等のモニタリングを試みる技術である. 反電子ニュートリノは物質との相互作用をほとんど 起こさない.そのため,発現事象領域内のバックグ ラウンド(BG)事象の削減が重要になる.

現在,原子炉ニュートリノモニター用反電子ニュ ートリノ検出器の候補として,液体シンチレータ (LS)とプラスチックシンチレータ(PS)の2種類 が存在する.将来的に原子炉ニュートリノモニター はトラックの荷台に詰める可搬型を想定しているた め,持ち運びがしやすく,形状の自由度が高い,液 体シンチレータの開発に取り組んでいる.中でも, 反電子ニュートリノ事象を効率よく検出するために Liを含有させ,BGを削減するために波形弁別能を 有した液体シンチレータを開発する必要がある.

* 大字院丄字研究科安全社会基盤丄字	專巧	Z
--------------------	----	---

- ** 原子力安全工学講座
- *** 若狭湾エネルギー研究センター
 - * System and Infrastructure Engineering for Safe and Sustainable Society, Graduate School of Engineering
- ** Department of Nuclear Safety Engineering, Faculty of Engineering
- *** The Wakasa Wan Energy Research Center

本論では、LS の構成物質である、LAB、PPO、Bis-MSB、UltimaGold-F に天然のLi を界面活性剤によっ て添加し、波形弁別能を有したLi 含有液体シンチレ ータ(LiLS)の開発を行った.また、作製したLiLS の発光特性として γ線源を用いた発光量、中性子線 源を用いた波形弁別能、中性子捕獲事象を評価した.

2. 背景

2.1 研究背景

原子炉ニュートリノモニターはニュートリノの特 性を生かした技術の一つであり、反電子ニュートリ ノを用いた原子炉燃料内部の組成をモニタリングす る技術である.従来の方法では原子炉を停止した後、 燃料を取り出して、燃料を解体して調べることで内 部がどのような組成になっているかを検証する.こ れは組成が判明するまでの時間がかかり、放射線に よる被ばくの観点からも危険が伴う.しかし、現在 開発中の原子炉ニュートリノモニターで検出する反 電子ニュートリノは、透過率が高いため原子炉建屋 外から遠隔での監視が可能である.また、検出され た反電子ニュートリノのイベント数とエネルギー分 布から燃料内部の組成を割り出すことが出来る.こ れにより、リアルタイムで燃料内部の組成を知るこ とが出来る.

原子炉ニュートリノモニターという技術は、従来 の時間と手間のかかる工程を省略するだけでなく, 本来の運転計画に対して運転状況が正しいかを判断 することができ、これにより原子炉の兵器転用防止 や、原子力発電所の事故防止に役立つことが期待さ れている^[1].

2.1.1 反電子ニュートリノ

ニュートリノは、素粒子の一種である.素粒子と は、物質の構成要素の最小単位であり、大きく分け て三種類存在する.物質を作る物質粒子、力を伝え るゲージ粒子、質量を与えるヒッグス粒子である. ニュートリノは物質粒子に属するレプトンの一種で ある.

ニュートリノは表1のようにフレーバーと質量で 分類される.フレーバーでは電子ニュートリノ,ミ ューニュートリノ,タウニュートリノに分類され, 質量ではニュートリノ1,ニュートリノ2,ニュート リノ3に分類される.このフレーバーによる分類と 質量による分類は一致せずに,一つのフレーバーを 選んだ際に,それは異なる質量のニュートリノの混 ざり合いになっている.例えば,「電子ニュートリノ」 と表記した際には,それはニュートリノ1,ニュート リノ2,ニュートリノ3が混合したものである.こ れを「ニュートリノ混合」という.

± 1	11 1	1071	. 3	1.	斤斤	Ħ
衣」ニュー	トリ	ノのノレー	~-	2	領	軍

フレーバー	質量
電子ニュートリノ	ニュートリノ1
ミューニュートリノ	ニュートリノ2
タウニュートリノ	ニュートリノ3

ニュートリノは、「粒子」であると同時に「波」と しての性質を持つ. そのため、それぞれ異なる質量 を持つニュートリノ 1、ニュートリノ 2、ニュートリ ノ 3 は、それぞれ異なる振動数を持つ「波」として 空間を伝搬する.

ニュートリノのフレーバーは、質量の決まった波 の重ね合わせとなり、ニュートリノが空間を飛ぶ間 に波の位相が変化し、フレーバーの種類が移り変わ る.この現象をニュートリノ振動と呼ぶ.

反電子ニュートリノは電子ニュートリノの反粒子 である.反粒子とは、質量とスピンが等しく、電荷 などが逆の性質の粒子のことをいう.反電子ニュー トリノの主な発生源は原子炉燃料の²³⁵Uの核分裂後 のβ崩壊である.核燃料の1核分裂当たり約6個の 反電子ニュートリノが発生し、熱出力3GWの場合、 毎秒約6×10²⁰個発生している.しかし、ニュートリ ノは電気的に中性で弱い相互作用でしか反応しない ので物質との相互作用をほとんど起こさない.した がって、検出器にて検出されるイベント数が少ない ため、関心領域でのバックグラウンド削減が重要と なる.

2.1.2 シンチレーション検出器

物質を構成する原子内の電子が放射線のエネルギーによって励起準位や伝導帯に励起された後,基底状態に戻るときにそのエネルギー差が光(電磁波) として放出される.この光をシンチレーションと呼ぶ.シンチレーションを出す蛍光体をシンチレータ という.シンチレータは主に,無機シンチレータと 有機シンチレータがある.

無機シンチレータは,原子番号の大きい元素を用いられることが多い.代表として NaI(Tl)シンチレー タがある.無機シンチレータの特徴としてはγ線の 全エネルギー吸収ピークを検出しやすく,高い発光 量を得られるため,エネルギー分解能が良い.

有機シンチレータは、炭素や水素を多く含む物質 で構成される.アントラセン、トランススチルベン ゼンなどの結晶や液体、プラスチックなど多くの種 類が存在する.主な構成元素が、炭素や水素等の原 子番号が小さいので、γ線に対してほとんど光電効 果を起こさないため、全エネルギー吸収ピークを形 成しない.γ線のほとんどが有機シンチレータ内で コンプトン散乱を起こす. 無機シンチレータとは異 なり、減衰時間が数 ns であるため高い計数率で使用 できるのが特徴である.

本研究では、反電子ニュートリノを検出するため に逆β崩壊反応を利用することから、陽子(水素) を多く含んだ有機シンチレータを使用する. 有機シ ンチレータには主に液体シンチレータ(LS)とプラ スチックシンチレータ(PS)があるが、本研究では LSを使用する. LSのメリットは、液体なので添加 物を添加しやすく必要な性能のシンチレータの開発 が容易であること、PSに対して安価な点がある. し かし、使用する溶媒は油なので取り扱いに注意が必 要である.

2.1.3 液体シンチレータの構成物質

液体シンチレータは,溶媒,溶質,添加物で構成 される.

溶媒には以下のような性質が求められる.

- エネルギー移行の効率が、溶媒・溶質間のみでな く溶媒・溶媒間でも大きいことが望ましい. 芳香 族化合物のゆるく結合したπ電子は一般にこの 性質を持つ.
- 2. 溶質の発光波長域に吸収が無い.
- 3. 溶質の溶解度が大きい.
- 4. 純度が良い.
- 5. 引火点が高い.
- このような性質を持つ代表的なものに、リニアアル

キルベンゼン (LAB), プソイドクメン (PC), フェ ニルキシリルエタン (PXE) がある.本研究ではこの 中でも引火点が 150℃と特に高い値を持つ LAB を使 用する.

溶質には、以下のような性質が求められる.

- 1. 蛍光量子効率が良い.
- 2. 純度が良い.
- 発光スペクトルが光電子増倍管等の光センサの 感度スペクトルに合う.
- 4. 発光波長域に溶質の吸収がない.
- 5. 蛍光の減衰時定数が短い.
- 6. 溶媒への溶解度が大きい.

これらを踏まえて, PPO, butyl-PBD, Bis-MSB など がよく用いられる.本研究では,このような条件に あった PPO と Bis-MSB を使用する.

添加物は、反電子ニュートリノを検出可能で波形 弁別能を付与する必要がある.反電子ニュートリノ の検出に重要なのは中性子捕獲核種の添加である. 中性子捕獲核種の代表的なものに、Gd や Li が存在 する.今回は中性子を捕獲した際にバックグラウン ドには少ないα線・トリチウムを放出する Li を添加 することにした.また、波形弁別能を行うための代 表的な添加物として、ナフタレンや UltimaGold-F (UG-F) がある.本研究では UG-F を使用する.

2.1.4 y 線と物質との相互作用

光子とシンチレータの相互作用には,光電効果, コンプトン散乱,電子対生成の3種類が存在する.

光電効果とは,光子が軌道電子にエネルギーを与 え,軌道電子が原子から飛び出す現象である.

コンプトン散乱は光子と電子の衝突で電子と散乱 光子が生じる現象である.衝突前後の光子のエネル ギーを E_{γ} , E'_{γ} とし,電子の質量をm,光速をcとす ると,散乱された電子のエネルギー E_e は,

$$E_e = E_{\gamma} - E_{\gamma}' = \frac{E_{\gamma}}{1 + \frac{mc^2}{E_{\gamma}(1 - \cos\varphi)}}$$
(1)

となる.シンチレータ内では散乱角φに依存するため,コンプトンエッジの形成をする.

電子対生成とは、光子が原子核の強い電場に吸収 され、電子と陽電子を生み出す反応をいう.電子と 陽電子の質量を生成するために、光子のエネルギー は電子の静止エネルギーの2倍の1.022MeV以上で ないと起こらない.

2.1.5 反電子ニュートリノの検出方法

反電子ニュートリノは逆β崩壊を用いて検出する. 逆β崩壊は反応式(2)のように反電子ニュートリノ と陽子が反応し,陽電子と中性子が発生する反応で ある.

$\bar{\nu}_e + p \rightarrow e^+ + n$ (2)

この反応で陽電子は電子と対消滅し、511keVのエ ネルギーのγ線を2本放出する(先発事象).中性子 は、電気的に中性であるため検出器で検出されにく い.そのため、シンチレータにLiを添加することに より検出器内で熱化した熱中性子を捕獲して合計エ ネルギーが4.8MeVとなるα線・トリチウムを放出 する(後発事象)(図1).

先発事象と後発事象との時間差は約数十μsあり, この時間相関を利用することでニュートリノ事象の 同定を行う.この時間差を利用し,時間相関のない バックグラウンド事象を削減する方法を遅延同時計 測法という.この先発事象と後発事象の時間差は Li 濃度によって変化する.

図 1.LiLS を用いた反電子ニュートリノの検出原理 2.1.6 中性子捕獲核種

2.1.5 で示したように反電子ニュートリノの検出 には中性子捕獲反応を用いる.中性子捕獲核種とし て主に表2のような Gd や Li などが用いられる.

本研究には中性子捕獲核種として中性子捕獲断面 積がある程度大きい元素,またバックグラウンド事 象に多いッ線とは弁別ができるという観点より、⁶Li を用いることとした.

表2よりLiには⁶Liと⁷Liの2種類の同位体が存 在する.中性子捕獲反応を起こすのは、⁶Liである. しかし、⁶Liは天然存在比が7.6%と非常に少ない. そのため、⁶Liを95%まで濃縮したLi化合物が販売 されているが、非常に高価である.液体シンチレー タの大型化を目標としている本研究においてはコス ト面からそれほど検出器にコストをかけることはで きない.そのため、本研究には濃縮したLi化合物を 使用するのではなく、天然存在比のLi化合物を使用 することとした.

私 2.工な THE 1 開度 14 種				
物質名	天然存在比	中性子捕獲断面積	反応	
	[%]	[barn]		
$^{1}\mathrm{H}$	99.985	0.33	(n, γ)	
⁶ Li	7.6	940	(n, α)	
⁷ Li	92.4	0.0454	-	
$^{10}\mathbf{B}$	19.9	3.835	(n, α)	
¹⁵⁵ Gd	14.8	60900	(n, γ)	
¹⁵⁷ Gd	15.65	254000	(n, γ)	
Gd ave		48800	-	

主? ナわ巾卅乙ば猫抜話

2.1.7.時間相関のあるバックグラウンド事象

遅延同時計測法を用いることにより,遅延同時計 測法を用いない場合に比べておおよそバックグラウ ンドを2桁程度除去することが可能である.しかし ながら,この先発事象,後発事象の時間差数+µsと いう似た時間差で起こる背景事象が存在する.それ が図2のような環境中の高速中性子事象である.

環境中の高速中性子が液体シンチレータ内の陽子 と弾性散乱し、反跳陽子を生成する.これが先発事 象である.弾性散乱後の中性子は液体シンチレータ 内で熱化し、⁶Liに中性子捕獲され、α線・トリチウ ムを放出する.これが後発事象となる.この高速中 性子事象による先発事象と後発事象も反電子ニュー トリノ検出の際の先発事象・後発事象の時間差と非 常によく似た時間差で発生するため、弁別が困難で ある.

そこで本研究においては反電子ニュートリノ事象 と高速中性子事象を弁別するために液体シンチレー タに後述する波形弁別能を付与した.波形弁別能を 付与することで反電子ニュートリノ事象の先発事象 である対消滅のγ線と高速中性子事象の先発事象で ある高速中性子起因の反跳陽子を弁別が可能になる.

図2.環境中の高速中性子事象

2.1.8 波形弁別能

2.1.7 で示したように反電子ニュートリノ観測の ためのバックグラウンド低減の観点から先発事象で ある y 線と中性子(反跳陽子)を弁別する必要があ る. 波形弁別能とは図3のように波形の減衰時間を 利用した弁別方法である. これを Pulse Shape Discrimination (PSD) という.

PSD の具体的な原理は観測した波形ごとに波形の 全体積分のQと波形の減衰部分の積分Q_{tail}を計算し, 積分値の比Q_{tail}/Qを求める.この値をエネルギーに 関しての分布を見ることで,図4のように γ 線の事 象と中性子による反跳陽子事象の弁別を行うことが 可能になる.

2.2 先行研究

波形弁別能を有した Li 含有液体シンチレータの 開発を行っているのが, アメリカの PROSPECT 実験 である.^{[2][3][4]}

PROSPECT 実験では⁶Liを濃縮した LiCl 水溶液を 使用し,液体シンチレータを開発している.この液 体シンチレータは,溶媒に DIN,溶質に PPO, Bis-MSB,添加物に濃縮 LiCl 水溶液,界面活性剤を用い ている.

波形弁別能について調査しており,後述の FoM の 値は本研究と同様の計算を行うと,4.11 となった.

3. 本研究の目的

先行研究では、⁶Liを濃縮した LiCl 水溶液を使用 することで液体シンチレータの開発が行われていた.

しかしながら, 濃縮した LiCl 水溶液は非常に高価 である. そのため, 今回は天然の Li が含有している LiCl 水溶液を使用し, 波形弁別能を有した Li 含有液 体シンチレータ(LiLS)の開発を行った.

本研究では、Li0.1wt%を含有した LiLS とLiを含 有していない LS の 2 種類を作製することにより LiLS の発光特性として発光量,波形弁別能,中性子 捕獲事象数の評価を行った.

4. 波形弁別能を有した Li含有液体シンチレータの 作製

4.1 材料の選定

通常の液体シンチレータは溶媒,溶質の2種類も しくは3種類(溶質が2種類)で構成される.しか し、今回は液体シンチレータにLiを添加し、かつ波 形弁別能を付与する必要があるため、溶媒、溶質に 添加物を加えた.

今回の液体シンチレータの材料と役割は表 3 に示した.

a >++ /1. >

衣 3. 液体シンテレータに用いた材料			
名称	材料名	役割	
溶媒	LAB	発光体	
第1溶質	PPO	発光剤	
第2溶質	Bis-MSB	波長変換剤	
添加物	LiCl 水溶液	Li の添加	
添加物	IGEPAL CO-630	界面活性剤	
添加物	UltimaGold-F	波形弁別能の付与	

4.2 液体シンチレータの作製方法

液体シンチレータの開発の前段階としてLiCl水溶 液を作製する必要がある.LiCl水溶液は工業用純水 50ml に対して 10g の LiCl を混合し, 攪拌すること で作製した.

LiLS は表 3 の材料を 150ml サイズのバイアルに入れ, 攪拌を行い, 作製した.

5. 測定環境

測定系には NIM モジュールを用いた.用いたモジ ュールは高圧電源(HV),入力信号を複数の信号に分 配する Linear Fan in-out,入力信号を増幅し出力する Amplifier,入力信号が閾値以上の信号の場合,矩形 波を出力する discriminator,入力信号をある一定の時 間遅らせて矩形波を出力する gate&delay generator を 用いた.

信号の取得装置として CAEN 製 FADC V1730 を用 いた. この FADC は, 14bit, 500MS/s のデジタイザ ーである.

5.1.反射材の選定

測定の際に、LSからのエネルギー分解能を向上させるにはLSからの光量を大きくする方が良い. 一般的にはサンプルにアルミホイルなどの反射材を巻くなどして光量を増やせるよう工夫を行う. 今回はどのような反射材を用いると光量が一番大きくなるか評価を行い、選定をした. 反射材の候補にはタイベックシート(Tyvek(Soft))、アルミを表面に蒸着したタイベックシート(Tyvek(Silver))、アルミホイル(Aluminum foil)、テフロンテープ(Teflon)を候補とした.¹³⁷Csを用いて測定を行い、コンプトンエッジの位置が一番高いところに来る反射材の組み合わせを用いた.結果は図6の通りになった.図6よりテフロンテープとアルミホイルを反射材として用いることとした.

図 6.反射材別による ¹³⁷Cs のコンプトンエッジ

6. γ 線源測定

 γ 線源を用いて,発光量の評価を行った. γ 線源 として¹³⁷Csを使用した.液体シンチレータには全エ ネルギー吸収ピークのような明確なピークは存在し ない.そのため、今回は¹³⁷Csのエネルギースペクト ルよりコンプトンエッジを同定することによって、 評価を行った.図7に各LSに対する測定で得られ た¹³⁷Csのエネルギースペクトルを示した.Liが添 加されることにより、発光量が減少していることが 確認できる.

エネルギースペクトルにガウス関数(式(3))で Fitを行った.そしてコンプトンエッジの位置を計算 (式(4))し,評価を行った.結果は表4に示した.

Gaussian function = N × exp
$$\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$
 (3)
C.E. = $\left(\mu + \frac{2.355}{2}\sigma\right) \pm \sqrt{\mu_{err}^2 + \left(\frac{2.355}{2}\sigma_{err}\right)^2}$ (4)

表 4.谷 LS におけるコン	ブトンエッジの位置
-----------------	-----------

サンプル	コンプトンエッジの位置 [ch]
LiなしLS	18449 ± 77
Li 0.1wt% LiLS	11865 ± 56

7. 中性子線源測定

7.1. 波形弁別能

中性子線源として、²⁵²Cf を用いた. 今回は図 3 で 示した Q の範囲を波形のピークより-20ns から +120ns, Q_{tail}の範囲を波形のピークより+36ns から +120ns として Q_{tail}/Qを求めた. Q_{tail}/Qをエネルギ ーに対してプロットした Li なし LS の PSD 分布を図 8 に示した. 図 8 より、高速中性子事象とγ事象が 明確に分離できていることが確認できる.

この範囲における 300keV~700keV の区間を Y 軸射 影した際に得られる PSD ヒストグラムは図 9 であ る.式(3)で示したガウス関数で Fit することによ り,ピークの位置と標準偏差を同定した.

図 8.Li なし LS の測定より得られた PSD 分布

図 9.Li なし LS の測定より得られた PSD ヒストグ ラム

波形弁別能を評価するパラメータとして FoM (式 (5))を用いた. PSD ヒストグラムを Fit すること で得られたピークの位置と標準偏差より, FoM の値 を求めた. 得られた FoM の値は表 5 に示した.

$$FoM = \frac{|\mu_n - \mu_\gamma|}{\sqrt{\sigma_n^2 + \sigma_\gamma^2}} \quad (5)$$

表 5.各 LS の FoM

サンプル	FoM
LiなしLS	3.46
Li 0.1wt% LiLS	2.74

7.2. 中性子捕獲事象

遅延同時計測法を用いて,中性子捕獲事象を評価 した.図10に今回遅延同時計測法を用いて評価を行 う²⁵²Cf 由来高速中性子による中性子捕獲事象の模 式図を示した.

図 10.²⁵²Cf 由来高速中性子による中性子捕獲事象

図 11 に先発事象と後発事象の時間差 dT 分布を示 した. 今回は $5\mu \sec\sim 105\mu \sec$ を時間相関のある事 象領域 ON time, $205\mu \sec\sim 305\mu \sec$ を時間相関のな い事象領域 OFF time として選定した.

今回の関心領域は中性子捕獲が確認できる後発事 象である. 図 12 に ON Time, OFF time, ON-OFF time の後発事象のエネルギースペクトルを示した. ON-OFF time のエネルギースペクトルでは 400keV~600keV 付近にピークが存在し, 6 Li による中 性子捕獲事象を確認することができた.

図 12 の中性子捕獲による事象数を確認するため, 図 13 に示すようにピークに式(3)で示したガウス 関数でFitした. ピークから前後2gの位置を積分し, 事象数を計算した.また,LiなしのLSに関しては 中性子捕獲による信号は確認できないので, 400keV~600keVの範囲を積分範囲として事象数を計 算した.計算結果は表6に示した.

図 13.中性子捕獲事象数計算のための積分範囲

表 6.各 LS の中性子捕獲事象数

サンプル	中性子捕獲事象数	
LiなしLS	105	
Li 0.1wt% LiLS	2432	

8. 結論

我々は、原子炉ニュートリノモニターの開発を進 めている.原子炉ニュートリノモニターとは、原子 炉稼働時に発生する反電子ニュートリノを観測する ことによって原子炉の稼働状況や U/Pu の燃料組成 比をリアルタイムでモニタリングを試みる技術であ る.しかし、これまでに成功している例は、原子炉 の稼働状況の確認までである.そのため、反電子ニ ュートリノのエネルギー分布を確認でき、燃料組成 のモニタリングができる反電子ニュートリノ検出器 の開発を行っている.

反電子ニュートリノの検出方法は,逆β崩壊を用 いて観測を行う.この時,先発事象として陽電子の 運動エネルギーと対消滅の際に発生する2本のγ線 が検出される.中性子は熱化し,液体シンチレータ に添加した⁶Liによって吸収されることで,α線と トリチウムを放出し、後発事象として検出される. この時間差を利用した遅延同時計測法を用いること で時間相関のないバックグラウンド事象を除去する. しかし、遅延同時計測法を用いても時間相関のある バックグラウンド事象が存在する.それは環境中の 高速中性子事象である.これは液体シンチレータに は通常ない波形弁別能を付与することによって先発 事象を弁別することが可能になり、ニュートリノ事 象を同定しやすくなる.

本研究では、波形弁別能を有した Li 含有液体シン チレータを開発し、発光特性評価を行い、Li 添加に よる液体シンチレータへの影響を評価した.

¹³⁷Csを用いた発光量評価では,Liを添加すること により,発光量が36%減少した.また,²⁵²Cfを用い た波形弁別能評価ではFoMが21%低下した.しか し,遅延同時計測法を用いた中性子捕獲事象の確認 では,Liを添加することによって,中性子捕獲によ る明確なピークを確認することができた.関心領域 内の事象数は23倍に増加した.

今後は、今回の結果を踏まえて、さらに液体シン チレータの Li 濃度依存性について調査を行い、反電 子ニュートリノ検出に特化した検出器を開発してい く予定である.

参考文献

1. Final Reports: Focused Workshop on Antineutrino Detection for Safeguards Applications,28-30 October 2008 IAEA Headquarters, Vienna

2. J. Ashenfelter et al., (PROSPECT collaboration),"The PROSPECT Reactor Antineutrino Experiment",Nucl. Instrum. Meth. A, 922(2018) 287

3. J. Ashenfelter et al.,(PROSPECT collaboration), "Lithium-loaded Liquid Scintillator Production for the PROSPECT experiment", 2019 JINST 14 P03026

4. J. Ashenfelter et al.,(PROSPECT collaboration), "Performance of a segment ⁶Li-loaded liquid scintillator detector for the PROSPECT experiment", Journal of Instrumentation, 2018 JINST 13 P06023