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Analysis on the Distribution of COVID-19 Cases by Country
— 2. Robust Power-Law Distribution Observed during the First Half of 2021 —
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Part 1 of this series!'! analyzed the global cases of COVID-19 during April through November,
2020. In this second report, the data from November 14, 2020 to August 7, 2021 are used for the
analysis. Four important findings on the rank-size relationship reported in Part 1 are reconfirmed.
(1) The top countries approximately follow the power-law distribution, with rank<csize™. (2) The
overall distribution can be represented by the lognormal distribution. (3) These two characteristics
are reproduced reasonably well by the discrete-time stochastic model that employs the weekly
reproduction rate (. (4) The distribution of i can be approximated by the gamma distribution. The
U-distribution determined for the time period of November 14, 2020 through May 22, 2021
predicts that the stationary distribution after a long time leads to form the power-law tail with =
1.24, while the actual data show o = 0.9 during the whole period. This persistent characteristic is
supported by the Monte Carlo simulation, showing the robustness of the power-law distribution
once established. In order to keep the number average size finite, the magnitude of o must be larger
than 1, which corresponds the condition with the average of ¢ smaller than 1. In addition to the
cases by country, the distribution of the number of deaths by country is investigated to find that the

characteristics described in item (1) and (2) apply.
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It was found'" that the power-law relationship, rankocx™

1. Introduction

In Part 1 of this series,"! the global cases of
COVID-19 reported on the website of Center for
Systems Science and Engineering at Johns Hopkins
University™™ were used to analyze the distribution of the
cases by country, i.e., the rank—size relationship. Because
the rank is proportional to the number fraction of the
countries whose number of cases is larger than a given
size, the rank corresponds to the upper probability
distribution CN(x) as follows.

rank o< CN(x) = j” N(x)dx . (1)

In Eq. (1), N(x) shows the number-based probability
density function (pdf), and x is the number of cases in a
country. The rank-size relationship directly shows the

cumulative distribution function graphically.
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applies for the top countries, and ¢ is approximately in
the range of 0.7 — 0.9 during the time period of April
through November, 2020. The power law for the
COVID-19 distribution was also reported by the other
researcher.”) When the power-law distribution rankocx™

applies, Equation (1) leads to give N(x) as follows.

N(x)e<x*" for large x’s. )

The power-law distribution is sometimes referred to as
scale free, because the average can go infinity. The
scale-free power-law distribution is a pathway capable of
connecting finite and infinite sizes smoothly, and appears
frequently in the theory of phase transition.*” Because
the pandemic is a phenomena that the infection prevails
endlessly, it may be related with the scale-free power law
distribution.

Although the upper tail probability distribution
conforms to the power law, it was found!!! that the whole

distribution, including the lower-ranked countries, can be
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represented by the lognormal distribution rather well.

The following simple discrete-time model'® was used
to examine the data. The increase of cases during a
certain week is represented by Ax, and the increase in
the next week is by Ax,. The newly infected would be
infectious, and let i, be the weekly reproduction rate,
defined by:

‘ut = AXH_]/AXt : (3)

The weekly reproduction rate u corresponds to an
approximate representation of the effective reproduction
number in epidemiology,”’ sometimes referred to by
using a symbol, R,.

With this simple model, the number of cases x, is

represented by the following equations.

X, =X, +Axt.

“4)

Ax, =g, Ax ®)

During the time period of April 20 through November
11, 2020, the distribution of u for the top 120 countries
showed that the average of u is 1.14, which is larger than
1, and the distribution cannot reach the stationary state.'®!
On the other hand, however, the Monte Carlo (MC)
simulation showed!"! that the distribution that conforms
to the above-mentioned two different types distribution
simultaneously can be formed during the transient period,
i.e., the power-law for the upper tail distribution and the
lognormal for the whole region.

In this subsequent report, the data were collected
every week for the period of Nov. 14, 2020 (0™ week, 7=
0) through Aug. 7, 2021 (38" week, ¢ = 38). From May
15, 2021 (¢ = 26), the numbers of deaths by country are
also collected.

2. Results and Discussion

2.1 Cases by Country

Fig. 1 and 2 show the rank-size relationship on the
designated dates, from 1 = 0 (Nov. 14, 2020) to 27 (May
22, 2021). Fig. 1 shows that the upper tail distribution
conforms to the power law, while the whole distribution
is represented by the lognormal distribution, as shown in
Fig. 2. The power exponent, & was determined by the
least square fit of the double logarithmic plot for the top
30 countries. Two characteristics found in Part 1" are
reconfirmed.

Fig. 3 shows the distribution of weekly reproduction

rate, i obtained from the data between ¢ = 0 and 27. The
distribution can be approximated by the gamma

distribution, represented by the following equation.

m=1
u u
|
(m)n n
Two parameters, m and 1 are determined to be m =
16.3 and 17 = 0.0609.
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Fig. 1 Relationship between the rank of the country and
the number of cases for the country. During this time
period, the USA is ranked the first, and rank = 1 for the
USA.
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Fig. 2 Fitted curves by the lognormal distribution.
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Fig. 3 Distribution of the weekly reproduction rate u for
the time period from ¢ = 0 to 27. The solid curve is the

fitted gamma distribution.

The average of the gamma distribution is given by
H=mn, (7)



which leads to # = 0993 and the distribution
converges to the stationary state.

Yamamoto'® reported that the present discrete-time
model leads to a stationary power-law tail with rankoc
-a

x7% if the following equation has a unique positive

solution, c.
[ e randp=1. ®)

Note that the left-hand side represents the expected
value of u”.
For the gamma distribution, Equation (8) can be
calculated to give
“ n'I'(m+a)
Jo S dp ="t =
For the case with m = 16.3 and 1 = 0.0609, one
obtains o= 1.24.

)

To confirm if the stationary state o is equal to 1.24,
the MC simulation was conducted. To determine the
stationary state ¢ accurately, the number of clusters (i.e.,
the total number of countries for the present problem)
was set to be N = 10°. The initial values used were xo =0
and Ax; = 1 for all clusters. The random number that
follows the gamma distribution with m = 16.3 and 1 =
0.0609 were used.

Fig. 4 shows the MC simulation results at = 10’
(blue) and ¢ = 10" (red, broken). Note that the y-axis
shows the upper probability distribution CN(x), defined
by Equation (1). Both curves overlap each other, and the
distribution has already reached the stationary state at t =
10°. It is confirmed that the upper tail follows the

power-law distribution with o= 1.24.
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Fig. 4 MC simulation results to confirm the validity of o
= 1.24 at the stationary state.

In spite of the fact that the stationary distribution has a
tail with o = 1.24, the a-values shown in Fig. 1 are about
0.9 for all cases. Fig. 5 shows the determined values for

each week up to the 27" week. The o~value is quite
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stable and is about 0.9 throughout the time period. Does
this discrepancy from the stationary state distribution
means that the present discrete-time stochastic model
cannot be applied? To examine this, another MC
simulation was conducted.

The value of x; was set to be equal to the actual data at
t = 1, and Ax, was determined from the difference of x;
and x, for each country. The simulation was done for N =
179 countries where Ax is larger than 0. The distribution

at t = 27 was simulated.
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Fig. 5 Obtained o-values from =0 to 27.

The MC simulation was repeated for 100 times, and
Fig. 6 shows all the simulated results, together with the
actual data shown by the red line. The data (red) is

within the range of 100 simulated results (colored dots).
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Fig. 6 Data at t = 27 (red) and the simulated results
(colored dots).
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Fig. 7 Comparison between the data at = 27 (red) and

the average of simulated results (blue).
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The blue line in Fig. 7 shows the average of the
simulated results repeated 100 times, which agrees
reasonably well with the actual data (red). The simulated
results (blue) show two important characteristics: (1) the
upper tail follows the power-law distribution with o =
0.9, as shown in Fig. 8a, and (2) the whole distribution
agrees well with the lognormal distribution, as shown in
Fig. 8b.
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Fig. 8 MC simulation results (blue) at ¢ = 27. Red line
shows (a) the power law with a = 0.9 and (b) the
lognormal fit.

Although the convergent stationary distribution is the
power-law distribution with & = 1.24, as shown in Fig. 4,
the MC simulation shows that a stable power-law
distribution with o = 0.9 holds throughout 27 weeks,
which agrees with the actual data.

In order to further examine the robustness of the
power law tail with a = 0.9, the simulation for ¢ = 100
was conducted. As shown in the green line in Fig. 9, the
power law tail with o = 0.9 is preserved even after 100
weeks. The power law tail is remarkably robust. As
shown in Fig. 10, the overall lognormal distribution is
also kept after 100 weeks.

Fig. 11 shows the actual data of o’s for the period
from ¢ = 28 to 38, and it is shown that & = 0.9 persists.
The power law distribution once formed seems to be
rather robust and the power exponent ¢ cannot be

changed easily.
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27 and 100. Both
distributions possess the power law tail with o= 0.9.

Fig. 9 Simulation results at ¢ =
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Fig. 10 Lognormal fit for the simulation results at ¢ =
100.
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Fig. 11 Obtained o~value for the cases by country during
the time period from ¢ = 28 to 38.

2.2 Deaths by Country

Starting from May 15, 2021 (¢ = 26), the numbers of
deaths by country were also collected. Fig. 12 shows the
38. The
distribution shows (1) the power-law tail and (2) good fit
to the The

characteristics are the same as for the cases by country.

distribution of the number of deaths at ¢ =

lognormal  distribution. fundamental
The power exponent determined from the top 30
countries is &= 0.85 at ¢ = 38.

Assuming that the fatality rate is almost the same for
all countries, the number of deaths is expected to have
the same power-law tail with o= 0.9. Fig. 13 shows the
power exponent for the deaths by country. The values are

compared with those for the cases by country. The



o~values for the deaths (= 0.85) and the cases (=0.9)
are almost the same, but the deaths show slightly smaller
o’s consistently. In general, smaller ¢ indicates a wider
disparity. This may imply the disparity of medical

systems among countries.
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Fig. 12 Relationship between the rank of the country and
the number of deaths for the country.
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Fig. 13 Obtained o~value for the deaths by country, in
comparison with cases by country, during the time period
from ¢ =26 to 38.

Fig. 14 shows the fatality rate by country. Fatality

rates of several countries are much higher than the

average.
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Fig. 14 Fatality rate by country as of August 7, 2021 (¢ =
38). The country order in the x-axis is the rank of the

cases by country.

2.3 Power Exponent at the Critical Point
In the standard theory of gelation in polymer

science,™ the gel (critical) point is reached when the
weight-average molecular weight goes to infinity.
Various power-law relationships hold at the vicinity of
gel point,**! which is known as the universality of the
critical phenomena.

In order to cause polymeric gelation, the formation of
cross-linkage that connects two different clusters is
required.”” The molecular weight distribution at the gel
point follows the power law, with o <2 at which the
weight average goes to infinity.

On the other hand, in the branched structure of
infection tree, no cross-linkage is formed. The elements
are connected in one direction, and there exists only one
start point in each tree. The expected size of the tree
when one picks up such a start point randomly is the
number-average size.'” For the infection tree, it is
reasonable to consider that the critical point is reached
when the number average goes to infinity. The number
of cases in a country is the sum of a finite number of
infection trees, and therefore, the critical point will be
the same as for the tree. In the distribution having a
power-law tail, the number average goes to infinity when
the magnitude of power exponentis a <1.

Assuming that the p-distribution follows the gamma
distribution, Equation (8) reduces to Equation (9). The
condition that yields & = 1 is given by the following
equation.

nmm=u=1.

The number average goes to infinity when the average

(10)

of u reaches 1. In fact, Yamamoto'® showed that o = 1,
which is known as the Zipf’s law, is obtained when the
average of u is 1, irrespective of the type of

U-distribution. In epidemiology, usual measure to
suppress epidemic is to make the effective reproduction
number, which corresponds to u, smaller than 1.7 The
condition to make &> 1 conforms to this usual criterion.

In Part 1 of this series,!” the conditions to make the
power exponent ¢ > 2 was considered, in order to
suppress the pandemic. It is now shown that &> 1 would
be a better criterion for the suppression.

The u data for 0 < ¢ <27 give m = 16.3 and 11 = 0.0609,
as shown in Fig. 3. In this case, 0 = 0.993 and o =
1.24. Because u<1, the pandemic is expected to be
terminated if the present u-distribution continues. The
[ -value (= 0.993) is very close to 1, but the o-value (=
1.24) of the stationary distribution is significantly larger
than 1.

As could be recognized from Fig. 3 the values of m =

27
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16.3 and n = 0.0609 are approximate. Assuming m =
16.3, it is straightforward to show that = 0.05955 gives
o =2 from Equation (9). The values of m = 16.3 and 1 =
0.05955 leads to nm=u=0.971.

Fig. 15 shows these two types of gamma distribution
graphically. The difference is surprisingly small. It
would be difficult to distinguish these two curves from
the actual data. Considering small differences in the
gamma distribution, the prevention criterion proposed in
Part 1, based on o = 2, might be still acceptable: (1) the
average U must be made smaller than 1 and (2) the time
period for 4 > 2 must be made negligibly small. Safer
condition of item (2) might be “the time period for u >
1.5 should be controlled to make as small as possible”.
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Fig. 15 Two types of gamma distribution. The red curve
shows the case with m = 16.3 and 17 = 0.0609, and the
blue curve is the case with m = 16.3 and 17 = 0.05955.

3. Conclusions

Following the analysis of the global cases of
COVID-19 reported in Part 1 of this series,"! the data
during November 14, 2020 (elapsed weeks, ¢t = 0)
through August 7, 2021 (¢ =
analysis in this report. Four important findings on the

38) were used for the

relationship between the rank and the number of cases by
country reported in Part 1 are reconfirmed for the present
time period. (1) The top countries approximately follow
the power-law distribution, with rankocsize™. (2) The
overall distribution is represented well by the lognormal
distribution. (3) These two characteristics can be
by the
stochastic model that employs the weekly reproduction

reproduced reasonably well discrete-time
rate . (4) The distribution of i can be approximated by
the gamma distribution.

The p-distribution determined for the time period from
t =0 to 27 predicts that the stationary distribution after a

long time leads to have the power-law tail with o= 1.24,

while the actual data show «a = 0.9 persistently
throughout the investigated time period. This persistent
o-value agrees with the MC simulation results. The
power-law distribution once formed is quite stable, and
the power exponent cannot be changed easily.

The number of deaths by country was investigated for
the time period of ¢ = 26 through 38. The relationship
between the rank and the number of deaths shows the
similar characteristics with the number of cases. (1) The
distribution possesses the power-law tail and (2) the
distribution is well fit to the lognormal distribution. The
power exponent of the tail distribution was o = 0.85,
which is slightly smaller than that for the cases by
country.

In order to keep the number average size finite, the
magnitude of o must be larger than 1, which corresponds
the condition with the average of u smaller than 1. In
order to suppress the pandemic, (1) the average y must
be made smaller than 1 and (2) the time period for y >
1.5 should be controlled to make as small as possible.
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