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Part 1 of this series[1] analyzed the global cases of COVID-19 during April through November, 

2020. In this second report, the data from November 14, 2020 to August 7, 2021 are used for the 
analysis. Four important findings on the rank-size relationship reported in Part 1 are reconfirmed. 
(1) The top countries approximately follow the power-law distribution, with rank∝size−α. (2) The 
overall distribution can be represented by the lognormal distribution. (3) These two characteristics 
are reproduced reasonably well by the discrete-time stochastic model that employs the weekly 
reproduction rate µ. (4) The distribution of µ can be approximated by the gamma distribution. The 
µ-distribution determined for the time period of November 14, 2020 through May 22, 2021 
predicts that the stationary distribution after a long time leads to form the power-law tail with α = 
1.24, while the actual data show α = 0.9 during the whole period. This persistent characteristic is 
supported by the Monte Carlo simulation, showing the robustness of the power-law distribution 
once established. In order to keep the number average size finite, the magnitude of α must be larger 
than 1, which corresponds the condition with the average of µ smaller than 1. In addition to the 
cases by country, the distribution of the number of deaths by country is investigated to find that the 
characteristics described in item (1) and (2) apply. 
 

Key Words : COVID-19, Ranking Plot, Power Law, Lognormal Distribution, Pandemic, 
Reproduction Rate, Gamma Distribution 

 
1. Introduction 
 

In Part 1 of this series,[1] the global cases of 
COVID-19 reported on the website of Center for 
Systems Science and Engineering at Johns Hopkins 
University[2] were used to analyze the distribution of the 
cases by country, i.e., the rank–size relationship. Because 
the rank is proportional to the number fraction of the 
countries whose number of cases is larger than a given 
size, the rank corresponds to the upper probability 
distribution CN(x) as follows. 

  
  
rank ∝CN (x) = N (x)dx

x

∞

∫ .  (1) 

In Eq. (1), N(x) shows the number-based probability 
density function (pdf), and x is the number of cases in a 
country. The rank-size relationship directly shows the 
cumulative distribution function graphically. 
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It was found[1] that the power-law relationship, rank∝x−α 
applies for the top countries, and α is approximately in 
the range of 0.7 – 0.9 during the time period of April 
through November, 2020. The power law for the 
COVID-19 distribution was also reported by the other 
researcher.[3] When the power-law distribution rank∝x−α 
applies, Equation (1) leads to give N(x) as follows. 

    N (x) ∝ x−α−1  for large x’s.  (2) 

The power-law distribution is sometimes referred to as 
scale free, because the average can go infinity. The 
scale-free power-law distribution is a pathway capable of 
connecting finite and infinite sizes smoothly, and appears 
frequently in the theory of phase transition.[4,5] Because 
the pandemic is a phenomena that the infection prevails 
endlessly, it may be related with the scale-free power law 
distribution. 

Although the upper tail probability distribution 
conforms to the power law, it was found[1] that the whole 
distribution, including the lower-ranked countries, can be 

相互関係（友好度）を考えない標準的な多対１の結

果である表 1と比べやや時間が長くなった程度で，論

理積を表すために新しく導入した変数による負荷はさ

ほどではないようである．

6. 結言

本稿では，いくつかの安定マッチング問題のMIPへ

の定式化例と計算機実験結果を示した．これらは，変

数の数を削減したり，big-Mの値の調整などで改善の

余地は多分にあろう．安定マッチングが存在するとは

限らない発展問題に対しては，ブロッキングペアの数

が安定度の指標の一つと見なせることから，この指標

最小化も考察した．また，配属者の相互関係も考慮し

たマッチングにも取り組んだ．

本報告では省略したが，定員下限つき研究室配属問

題に対処するため安定性を緩和した「無駄のないマッ

チング」，「フェアなマッチング」という概念も提案され

ており，無駄がなくフェアなマッチングが安定マッチ

ングと対応する [17]．これらの概念も，MIPに定式化で

きる．

一方，マッチングアルゴリズムで重要な「耐戦略性」

の定式化については，本報告では考察していない．マッ

チングアルゴリズムが耐戦略性を持つとは，他の主体

がどうするかに関わらず，各主体は選好順位・満足度

リストで嘘をついても利のないことを指す.

GSアルゴリズムは，それが適用可能な問題に対して

は二つの集合のどちらか，すなわち結婚問題なら男性

側あるいは女性側のみに対戦略性を持たせることがで

きる [7]．また，定員下限つき多対１マッチング問題で

やや緩和した意味の安定性と耐戦略性をもつアルゴリ

ズムが提案されている [18]．

MIPは様々な最適化問題のプラットフォームなので，

計算機の方式が変化してもその汎用ソルバーとしての

性能は今後しばらく上昇すると予想され，より規模の

大きい問題の解決が期待できる．耐戦略性がMIPに定

式化できるかは今後の課題としたい．
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represented by the lognormal distribution rather well.  
The following simple discrete-time model[6] was used 

to examine the data. The increase of cases during a 
certain week is represented by Δxt, and the increase in 
the next week is by Δxt+1. The newly infected would be 
infectious, and let µt be the weekly reproduction rate, 
defined by: 

    µt = Δxt+1 Δxt .   (3) 

The weekly reproduction rate µ corresponds to an 
approximate representation of the effective reproduction 
number in epidemiology,[7] sometimes referred to by 
using a symbol, Rt.  

With this simple model, the number of cases xt is 
represented by the following equations. 

    xt+1 = xt + Δxt .    (4) 

    Δxt = µt−1Δxt−1 .   (5) 

During the time period of April 20 through  November 
11, 2020, the distribution of µ for the top 120 countries 
showed that the average of µ is 1.14, which is larger than 
1, and the distribution cannot reach the stationary state.[6] 
On the other hand, however, the Monte Carlo (MC) 
simulation showed[1] that the distribution that conforms 
to the above-mentioned two different types distribution 
simultaneously can be formed during the transient period, 
i.e., the power-law for the upper tail distribution and the 
lognormal for the whole region.  

In this subsequent report, the data were collected 
every week for the period of Nov. 14, 2020 (0th week, t = 
0) through Aug. 7, 2021 (38th week, t = 38). From May 
15, 2021 (t = 26), the numbers of deaths by country are 
also collected. 

 
2. Results and Discussion 
 
2.1 Cases by Country 

Fig. 1 and 2 show the rank-size relationship on the 
designated dates, from t = 0 (Nov. 14, 2020) to 27 (May 
22, 2021). Fig. 1 shows that the upper tail distribution 
conforms to the power law, while the whole distribution 
is represented by the lognormal distribution, as shown in 
Fig. 2. The power exponent, α was determined by the 
least square fit of the double logarithmic plot for the top 
30 countries. Two characteristics found in Part 1[1] are 
reconfirmed.  

Fig. 3 shows the distribution of weekly reproduction 

rate, µ obtained from the data between t = 0 and 27. The 
distribution can be approximated by the gamma 
distribution, represented by the following equation. 

  
  
f (µ) = µm−1

Γ(m)ηm exp − µ
η

⎛
⎝⎜

⎞
⎠⎟

.  (6) 

Two parameters, m and η are determined to be m = 
16.3 and η = 0.0609. 

 

 
Fig. 1 Relationship between the rank of the country and 
the number of cases for the country. During this time 
period, the USA is ranked the first, and rank = 1 for the 
USA. 
 

 
Fig. 2 Fitted curves by the lognormal distribution. 
 

 
Fig. 3 Distribution of the weekly reproduction rate µ for 
the time period from t = 0 to 27. The solid curve is the 
fitted gamma distribution. 

 
The average of the gamma distribution is given by 
   µ = mη ,    (7) 
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which leads to µ  = 0.993 and the distribution 
converges to the stationary state. 

Yamamoto[6] reported that the present discrete-time 
model leads to a stationary power-law tail with rank∝
x−α, if the following equation has a unique positive 
solution, α. 

  
  

µα f (µ)dµ
0

∞

∫ = 1 .   (8) 

Note that the left-hand side represents the expected 
value of µα. 

For the gamma distribution, Equation (8) can be 
calculated to give 

  
  

µα f (µ)dµ
0

∞

∫ = ηαΓ(m+α )
Γ(m)

= 1 .  (9) 

For the case with m = 16.3 and η = 0.0609, one 
obtains α = 1.24.  

To confirm if the stationary state α is equal to 1.24, 
the MC simulation was conducted. To determine the 
stationary state α accurately, the number of clusters (i.e., 
the total number of countries for the present problem) 
was set to be N = 105. The initial values used were x0 = 0 
and Δx-1 = 1 for all clusters. The random number that 
follows the gamma distribution with m = 16.3 and η = 
0.0609 were used. 

Fig. 4 shows the MC simulation results at t = 103 
(blue) and t = 104 (red, broken). Note that the y-axis 
shows the upper probability distribution CN(x), defined 
by Equation (1). Both curves overlap each other, and the 
distribution has already reached the stationary state at t = 
103. It is confirmed that the upper tail follows the 
power-law distribution with α = 1.24. 

 

 
Fig. 4 MC simulation results to confirm the validity of α 
= 1.24 at the stationary state. 

 
In spite of the fact that the stationary distribution has a 

tail with α = 1.24, the α-values shown in Fig. 1 are about 
0.9 for all cases. Fig. 5 shows the determined values for 
each week up to the 27th week. The α-value is quite 

stable and is about 0.9 throughout the time period. Does 
this discrepancy from the stationary state distribution 
means that the present discrete-time stochastic model 
cannot be applied? To examine this, another MC 
simulation was conducted. 

The value of x1 was set to be equal to the actual data at 
t = 1, and Δx0 was determined from the difference of x1 
and x0 for each country. The simulation was done for N = 
179 countries where Δx0 is larger than 0. The distribution 
at t = 27 was simulated. 

 

 
Fig. 5 Obtained α-values from t = 0 to 27. 
 

The MC simulation was repeated for 100 times, and 
Fig. 6 shows all the simulated results, together with the 
actual data shown by the red line. The data (red) is 
within the range of 100 simulated results (colored dots). 

 

 
Fig. 6 Data at t = 27 (red) and the simulated results 
(colored dots). 

 

 
Fig. 7 Comparison between the data at t = 27 (red) and 
the average of simulated results (blue). 
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The blue line in Fig. 7 shows the average of the 
simulated results repeated 100 times, which agrees 
reasonably well with the actual data (red). The simulated 
results (blue) show two important characteristics: (1) the 
upper tail follows the power-law distribution with α = 
0.9, as shown in Fig. 8a, and (2) the whole distribution 
agrees well with the lognormal distribution, as shown in 
Fig. 8b.  

 

 
Fig. 8 MC simulation results (blue) at t = 27. Red line 
shows (a) the power law with α = 0.9 and (b) the 
lognormal fit. 

 
Although the convergent stationary distribution is the 

power-law distribution with α = 1.24, as shown in Fig. 4, 
the MC simulation shows that a stable power-law 
distribution with α = 0.9 holds throughout 27 weeks, 
which agrees with the actual data.  

In order to further examine the robustness of the 
power law tail with α = 0.9, the simulation for t = 100 
was conducted. As shown in the green line in Fig. 9, the 
power law tail with α = 0.9 is preserved even after 100 
weeks. The power law tail is remarkably robust. As 
shown in Fig. 10, the overall lognormal distribution is 
also kept after 100 weeks.  

Fig. 11 shows the actual data of α’s for the period 
from t = 28 to 38, and it is shown that α = 0.9 persists. 
The power law distribution once formed seems to be 
rather robust and the power exponent α cannot be 
changed easily. 

 

 
Fig. 9 Simulation results at t = 27 and 100. Both 
distributions possess the power law tail with α = 0.9. 
 

 
Fig. 10 Lognormal fit for the simulation results at t = 
100. 
 

 
Fig. 11 Obtained α-value for the cases by country during 
the time period from t = 28 to 38.  
 
2.2 Deaths by Country 

Starting from May 15, 2021 (t = 26), the numbers of 
deaths by country were also collected. Fig. 12 shows the 
distribution of the number of deaths at t = 38. The 
distribution shows (1) the power-law tail and (2) good fit 
to the lognormal distribution. The fundamental 
characteristics are the same as for the cases by country. 
The power exponent determined from the top 30 
countries is α = 0.85 at t = 38. 

Assuming that the fatality rate is almost the same for 
all countries, the number of deaths is expected to have 
the same power-law tail with α = 0.9. Fig. 13 shows the 
power exponent for the deaths by country. The values are 
compared with those for the cases by country. The 
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α-values for the deaths ( ≅ 0.85) and the cases ( ≅ 0.9) 
are almost the same, but the deaths show slightly smaller 
α’s consistently. In general, smaller α indicates a wider 
disparity. This may imply the disparity of medical 
systems among countries. 

 

 
Fig. 12 Relationship between the rank of the country and 
the number of deaths for the country.  

 

 
Fig. 13 Obtained α-value for the deaths by country, in 
comparison with cases by country, during the time period 
from t = 26 to 38. 

 
Fig. 14 shows the fatality rate by country. Fatality 

rates of several countries are much higher than the 
average. 

 

 
Fig. 14 Fatality rate by country as of August 7, 2021 (t = 
38). The country order in the x-axis is the rank of the 
cases by country. 
 
2.3 Power Exponent at the Critical Point 

In the standard theory of gelation in polymer 

science,[8] the gel (critical) point is reached when the 
weight-average molecular weight goes to infinity. 
Various power-law relationships hold at the vicinity of 
gel point,[4,5] which is known as the universality of the 
critical phenomena.  

In order to cause polymeric gelation, the formation of 
cross-linkage that connects two different clusters is 
required.[9] The molecular weight distribution at the gel 
point follows the power law, with  α ≤ 2  at which the 
weight average goes to infinity. 

On the other hand, in the branched structure of 
infection tree, no cross-linkage is formed. The elements 
are connected in one direction, and there exists only one 
start point in each tree. The expected size of the tree 
when one picks up such a start point randomly is the 
number-average size.[10] For the infection tree, it is 
reasonable to consider that the critical point is reached 
when the number average goes to infinity. The number 
of cases in a country is the sum of a finite number of 
infection trees, and therefore, the critical point will be 
the same as for the tree. In the distribution having a 
power-law tail, the number average goes to infinity when 
the magnitude of power exponent is  α ≤1 . 

Assuming that the µ-distribution follows the gamma 
distribution, Equation (8) reduces to Equation (9). The 
condition that yields α = 1 is given by the following 
equation. 

    ηm = µ = 1 .    (10) 

The number average goes to infinity when the average 
of µ reaches 1. In fact, Yamamoto[6] showed that α = 1, 
which is known as the Zipf’s law, is obtained when the 
average of µ is 1, irrespective of the type of 
µ-distribution. In epidemiology, usual measure to 
suppress epidemic is to make the effective reproduction 
number, which corresponds to µ, smaller than 1.[7] The 
condition to make α > 1 conforms to this usual criterion.  

In Part 1 of this series,[1] the conditions to make the 
power exponent α > 2 was considered, in order to 
suppress the pandemic. It is now shown that α > 1 would 
be a better criterion for the suppression.  

The µ data for 0 < t < 27 give m = 16.3 and η = 0.0609, 
as shown in Fig. 3. In this case, µ  = 0.993 and α = 
1.24. Because  µ <1 , the pandemic is expected to be 
terminated if the present µ-distribution continues. The 
µ -value (= 0.993) is very close to 1, but the α-value (= 
1.24) of the stationary distribution is significantly larger 
than 1. 

As could be recognized from Fig. 3 the values of m = 
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16.3 and η = 0.0609 are approximate. Assuming m = 
16.3, it is straightforward to show that η = 0.05955 gives 
α = 2 from Equation (9). The values of m = 16.3 and η = 
0.05955 leads to   ηm = µ = 0.971 . 

Fig. 15 shows these two types of gamma distribution 
graphically. The difference is surprisingly small. It 
would be difficult to distinguish these two curves from 
the actual data. Considering small differences in the 
gamma distribution, the prevention criterion proposed in 
Part 1, based on α = 2, might be still acceptable: (1) the 
average µ must be made smaller than 1 and (2) the time 
period for µ > 2 must be made negligibly small. Safer 
condition of item (2) might be “the time period for µ > 
1.5 should be controlled to make as small as possible”. 

 

 
Fig. 15 Two types of gamma distribution. The red curve 
shows the case with m = 16.3 and η = 0.0609, and the 
blue curve is the case with m = 16.3 and η = 0.05955. 
 
3. Conclusions 
 

Following the analysis of the global cases of 
COVID-19 reported in Part 1 of this series,[1] the data 
during November 14, 2020 (elapsed weeks, t = 0) 
through August 7, 2021 (t = 38) were used for the 
analysis in this report. Four important findings on the 
relationship between the rank and the number of cases by 
country reported in Part 1 are reconfirmed for the present 
time period. (1) The top countries approximately follow 
the power-law distribution, with rank∝size−α. (2) The 
overall distribution is represented well by the lognormal 
distribution. (3) These two characteristics can be 
reproduced reasonably well by the discrete-time 
stochastic model that employs the weekly reproduction 
rate µ. (4) The distribution of µ can be approximated by 
the gamma distribution. 

The µ-distribution determined for the time period from 
t = 0 to 27 predicts that the stationary distribution after a 
long time leads to have the power-law tail with α = 1.24, 

while the actual data show α = 0.9 persistently 
throughout the investigated time period. This persistent 
α-value agrees with the MC simulation results. The 
power-law distribution once formed is quite stable, and 
the power exponent cannot be changed easily. 

The number of deaths by country was investigated for 
the time period of t = 26 through 38. The relationship 
between the rank and the number of deaths shows the 
similar characteristics with the number of cases. (1) The 
distribution possesses the power-law tail and (2) the 
distribution is well fit to the lognormal distribution. The 
power exponent of the tail distribution was α = 0.85, 
which is slightly smaller than that for the cases by 
country. 

In order to keep the number average size finite, the 
magnitude of α must be larger than 1, which corresponds 
the condition with the average of µ smaller than 1. In 
order to suppress the pandemic, (1) the average µ must 
be made smaller than 1 and (2) the time period for µ > 
1.5 should be controlled to make as small as possible. 
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